详解 leetcode 221题:最大正方形

学好算法没有捷径,最好的捷径就是多刷题,并且跳出舒适区,每道题都要寻找最优解,也不能老是做那些你自己比较擅长的题,不定期更新 Leetcode 的题,每道题都会给出多种解法以及最优解。

题目描述

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例

输入: 

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

输出: 4

解法一:暴力法

在一个二维矩形中,如果我们要确定一个矩阵,我们只需要知道确定它的左上角右下角就可以了,而正方形相当于边相等的矩阵。这道题暴力法还是比较好做,就是把矩阵中的每一个点,都充当左上角来遍历搜索一下。

例如我刚开始把(0,0)这个点当左上角,然后向右下角搜索

搜索的过程中,用一个变量来记录最大正方形的面积。接着用(0,1)作为左上角,不断着向右下角搜索

当然,(0,1)这个位置本身就是 0 ,所以是没有搜索的必要的,我这里只是做个演示。最终的代码如下,代码中也有详细的介绍

    public int maximalSquare(char[][] matrix) {
        // 如果矩阵长或宽少于1则直接返回0
        if(matrix.length < 1 || matrix[0].length < 1)
            return 0;
        
        int rows = matrix.length;
        int cols = matrix[0].length;
        // 记录最大边长
        int max = 0;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                // 把(i,j)作为左上角向右下角搜索
                if (matrix[i][j] == '1') {
                    // 此时正方形的边长
                    int sqlen = 1;
                    boolean flag = true;//记录是否遇到0的位置
                    while (sqlen + i < rows && sqlen + j < cols && flag) {
                        for (int k = j; k <= sqlen + j; k++) {
                            if (matrix[i + sqlen][k] == '0') {
                                flag = false;
                                break;
                            }
                        }
                        for (int k = i; k <= sqlen + i; k++) {
                            if (matrix[k][j + sqlen] == '0') {
                                flag = false;
                                break;
                            }
                        }
                        if (flag)
                            sqlen++;
                    }
                    if (max < sqlen) {
                        max = sqlen;
                    }
                }
            }
        }
        return max * max;
    }
  • 时间复杂度:O((mn)^2)
  • 空间复杂度:O(1)

解法二:动态规划

对于动态规划,大部分情况下我们都会定义一个二维数组dp,然后定义dp[i][j] 的含义,接着推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。当然,也可以是推导 dp[i][j] 与 dp[i+1][j]、dp[i][j+1]、dp[i+1][j+1] 之间的关系,下面我们讲下用 dp 该怎么解这道题。

1、首先我们定义 dp[i][j] 含义为正方形以 dp[i][j] 作为右下角时的最大边长值

2、接着我们来推导他们的关系

显然,对于任意一点 dp[i][j],由于该点是正方形的右下角,所以该点的右边,下边,右下边都不用考虑,关心的是左边,上边,和左上边,也就是我们要推导 dp[i][j] 与 dp[i-1][j]、dp[i][j-1]、dp[i-1][j-1] 之间的关系。他们有如下关系

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

这个关系其实也不算难推,毕竟不能有 0 存在,所以只能取交他们三个点的交集。你们可以画个图,可能就比较好理解了。

代码如下:

    public int maximalSquare(char[][] matrix) {
        // 如果矩阵长或宽少于1则直接返回0
        if(matrix.length < 1 || matrix[0].length < 1)
            return 0;
        int rows = matrix.length;
        int cols = matrix[0].length;
        
        int[][] dp = new int[rows + 1][cols + 1];
        int max = 0;
        for (int i = 1; i <= rows; i++) {
            for (int j = 1; j <= cols; j++) {
                if (matrix[i-1][j-1] == '1'){
                    dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
                    max = Math.max(max, dp[i][j]);
                }
            }
        }
        return max * max;
    }
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n*m)

解法三:动态规划优化

用动态规划时,可以说 80% 都是用二维数组,但是 80% 也都可以优化成一维数组,这很容易理解,大家看这个公式

dp[i][j] = min( dp[i-1][j], dp[i-1][j-1], dp[i][j-1] )+ 1

通过上面的公式我们可以知道,我们要算 dp[i][j] 的值时,只需要用到 dp[i-1][j], dp[i][j-1], dp[i-1][j-1] 三个值就可以了。也就是说,我们在算矩阵 dp 第 i 行的值时,只需要用第 (i - 1) 行的值,至于(i-2)的值根本就不需要用到

所以我们只需要用一个一维数组就可以了,然后每次算出第 i 行的值,就马上用一维数组 dp[0…n] 把这行值保存起来,供计算 i+1 行时使用。

如下图

new_dp[i] 相当于二维矩阵的 dp[i][j]

dp[i] 相当于 dp[i-1][j]

dp[i-1] 相当于 dp[i-1][j]

pre 相当于 dp[i-1][j-1]。

然后用一维矩阵的话,我们每次计算出 new_dp[i] 后,就马上用 new_dp[i] 覆盖 dp[i] 的值,并且还要用一个变量 pre 来保存dp[i-1][j-1]的值。

好吧,估计你也给我绕晕了,如果不大理解,强烈建议画图模拟一下

最终代码如下

    public int maximalSquare(char[][] matrix) {
        if(matrix.length < 1 || matrix[0].length < 1)
            return 0;

        int rows = matrix.length;
        int cols = matrix[0].length;
        int[] dp = new int[cols + 1];
        int max = 0, prev = 0;
        for (int i = 1; i <= rows; i++) {
            for (int j = 1; j <= cols; j++) {
                int temp = dp[j];
                if (matrix[i - 1][j - 1] == '1') {
                    dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;
                    max = Math.max(max, dp[j]);
                } else {
                    dp[j] = 0;
                }
                prev = temp;
            }
        }
        return max * max;
    }
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(n)

额外话

动态规划是一个比较难的算法思想,特别是对于初学者,遇到动态规划的题基本凉,我刚开始也被搞过,后来能看懂关于动态规划的答案,但是自己写不出,一气之下做了几十道动态规划的题,发现做来做去套路都差不多,于是总结出了自己的一个套路模板,从此 80% 的动态规划题都会做。所以呢,后面找个时间我得写一写我的经验,这个经验适合看得懂动态规划,但又不知道怎么下手的人,不过写这篇文章估计需要挺长时间,所以几时写还没确定,,,,大家也可以学我,直接做 50 道动态规划的题,准稳。

看完有收获?那么希望老铁别吝啬你的三连击哦

1、点赞,可以让更多的人看到这篇文章
2、关注我的原创微信公众号『苦逼的码农』,第一时间阅读我的文章,主打算法。公众号后台回复『电子书』,还送你一份电子书大礼包哦。
3、也欢迎关注我的博客哦。

公众号主页

作者简洁

作者:帅地,一位热爱、认真写作的小伙,目前维护原创公众号:『苦逼的码农』,以写了150多篇文章,专注于写 算法、计算机基础知识等提升你内功的文章,期待你的关注。
转载说明:务必注明来源(注明:来源于公众号:苦逼的码农, 作者:帅地)

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值