Educoder python NumPy数组的高级操作 第4关:广播机制

题目链接:https://www.educoder.net/tasks/zrfmnp3chiqs

 


任务描述

本关任务:利用广播机制实现Z-score标准化。

相关知识

为了完成本关任务,你需要掌握:

  • 什么是广播;
  • 广播的原则。

什么是广播

两个ndarray对象的相加、相减以及相乘都是对应元素之间的操作。


 
  1. import numpy as np
  2.  
  3. x = np.array([[2,2,3],[1,2,3]])
  4. y = np.array([[1,1,3],[2,2,4]])
  5.  
  6. print(x*y)
  7.  
  8. '''
  9. 输入结果如下:
  10. [[ 2 2 9]
  11. [ 2 4 12]]
  12. '''

当两个ndarray对象的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(broadcasting

比如,一个二维的ndarray对象减去列平均值,来对数组的每一列进行取均值化处理:


 
  1. import numpy as np
  2.  
  3. # arr为4行3列的ndarray对象
  4. arr = np.random.randn(4,3)
  5. # arr_mean为有3个元素的一维ndarray对象
  6. arr_mean = arr.mean(axis=0)
  7. # 对arr的每一列进行
  8. demeaned = arr - arr_mean

很明显上面代码中的arrarr_mean维度并不形同,但是它们可以进行相减操作,这就是通过广播机制来实现的。

广播的原则

广播的原则:如果两个数组的后缘维度trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失或长度为1的维度上进行,这句话是理解广播的核心。

广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1

我们来看一个例子:


 
  1. import numpy as np
  2.  
  3. arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])
  4. arr2 = np.array([1, 2, 3])
  5. arr_sum = arr1 + arr2
  6. print(arr_sum)
  7.  
  8. '''
  9. 输入结果如下:
  10. [[1 2 3]
  11. [2 3 4]
  12. [3 4 5]
  13. [4 5 6]]
  14. '''

arr1shape(4,3)arr2shape(3,)。可以说前者是二维的,而后者是一维的。但是它们的后缘维度相等,arr1的第二维长度为3,和arr2的维度相同。

arr1arr2shape并不一样,但是它们可以执行相加操作,这就是通过广播完成的,在这个例子当中是将arr2沿着0轴进行扩展。

我们再看一个例子:


 
  1. import numpy as np
  2.  
  3. arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]]) #arr1.shape = (4,3)
  4. arr2 = np.array([[1],[2],[3],[4]]) #arr2.shape = (4, 1)
  5.  
  6. arr_sum = arr1 + arr2
  7. print(arr_sum)
  8.  
  9. '''
  10. 输出结果如下:
  11. [[1 1 1]
  12. [3 3 3]
  13. [5 5 5]
  14. [7 7 7]]
  15. '''

arr1shape(4,3)arr2shape(4,1),它们都是二维的,但是第二个数组在1轴上的长度为1,所以,可以在1轴上面进行广播。

编程要求

请在右侧编辑器Begin-End处补充代码,将输入数据转换为array并计算它们的和。

  • 具体要求请参见后续测试样例。

请先仔细阅读右侧上部代码编辑区内给出的代码框架,再开始你的编程工作!

测试说明

平台会对你编写的代码进行测试,对比你输出的数值与实际正确的数值,只有所有数据全部计算正确才能进入下一关。

测试输入:

[[9, 3, 1], [7, 0, 6], [4, 6, 3]] [1, 5, 9] [[9], [6], [7]]

预期输出:


 
  1. [[19 17 19]
  2. [14 11 21]
  3. [12 18 19]]

开始你的任务吧,祝你成功!

import numpy as np
def student(a,b,c):
    result=[]
    # ********* Begin *********#
    a=np.array(a)
    b=np.array(b)
    c=np.array(c)
    result=a+b+c
    # ********* End *********#
    return result

 

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值