Educoder python pandas介绍 第1关:数据集介绍


任务描述

本关任务:了解数据集的结构。

相关知识

在学习pandas的过程中,我们将使用《财富》杂志2017年全球500强榜单中的一组数据。数据集最初是在这里下载的;但是,我们修改了原始数据集,使其更容易使用。

数据集是一个名为f500.csv的CSV文件。以下是这个CSV中一些列的介绍:

  • company:公司名称;

  • rank:该公司的全球500强排名;

  • revenues:公司本财年的总收入,以百万美元计;

  • revenue_change:当前和上一会计年度之间收入的百分比变化;

  • profits:本财年的净收入,以百万美元计;

  • ceo:公司首席执行官;

  • industry:公司经营的行业;

  • sector:公司运营的部门;

  • previous_rank:上一年度公司的全球500强排名;

  • country:公司总部所在的国家/地区。

NumPy的导入约定类似(import numpy as np),pandas的导入约定为:


 
  1. import pandas as pd

在这个屏幕右边的代码编辑器中,我们已经导入了pandas,并使用pandas.read_csv()函数将CSV读入数据到一个dataframe中并将其赋值给变量f500。我们将在本课程的后面学习read_csv(),但是现在,你只需要知道它可以自动处理大多数CSV文件的读取和解析。

numpyndarray类似,pandasdataframe也有一个.shape属性,该属性返回一个元组,表示对象每个轴的维度。我们将使用它和Pythontype()函数来检查f500dataframe

编程要求

请仔细阅读右侧代码,结合相关知识,在Begin-End 区域内进行代码补充,完成以下需求:

  1. 使用Pythontype()函数将f500的类型赋值给f500_type

  2. 使用DataFrame.shape属性将f500的形状赋值给f500_shape

  3. 打印变量f500_typef500_shape

测试说明

平台会对你的代码进行运行测试,如果实际输出结果与预期结果相同,则通关;反之,则 GameOver

 

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None

# 请在此添加代码,分别打印f500的类型和形状大小
#********** Begin **********#
f500_type=type(f500) #使用Python的type()函数将f500的类型赋值给f500_type
f500_shape=f500.shape  #使用DataFrame.shape属性将f500的形状赋值给f500_shape
print(f500_type) #打印变量f500_type
print(f500_shape) #打印变量f500_shape
#********** End **********#

 

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值