Educoder python pandas介绍 第6关:通过标签从series中选择项


任务描述

本关任务:按标签从series中选择项。

相关知识

在上一关我们使用Series.value_counts()方法进行了练习。接下来,让我们找出整个f500dataframe中的country列中每个值的计数:


 
  1. countries = f500["country"]
  2. country_counts = countries.value_counts()

输出结果:


 
  1. USA 132
  2. China 109
  3. Japan 51
  4. France 29
  5. Germany 29
  6. Britain 24
  7. South Korea 15
  8. Switzerland 14
  9. Netherlands 14
  10. Canada 11
  11. Spain 9
  12. Brazil 7
  13. Italy 7
  14. India 7
  15. Australia 7
  16. Taiwan 6
  17. Russia 4
  18. Ireland 4
  19. Singapore 3
  20. Sweden 3
  21. Mexico 2
  22. Turkey 1
  23. Venezuela 1
  24. Indonesia 1
  25. U.A.E 1
  26. Denmark 1
  27. Thailand 1
  28. Belgium 1
  29. Saudi Arabia 1
  30. Luxembourg 1
  31. Norway 1
  32. Israel 1
  33. Malaysia 1
  34. Finland 1
  35. Name: country, dtype: int64

但是,如果我们只想选择India的数量呢?或者只计算North America的数量?

dataframe一样,我们可以使用Series.loc[]从单个标签,列表或切片对象中选择series中的项。我们也可以省略loc[]并使用括号快捷键来表示所有的这三种方法:

Select by Label Explicit Syntax Shorthand Convention
Single item from series s.loc["item8"] s["item8"]
List of items from series s.loc[["item1","item7"]] s[["item1","item7"]]
Slice of items from series s.loc["item2":"item4"] s["item2":"item4"]

让我们练习从pandasseries中选择数据:

编程要求

请仔细阅读右侧代码,结合相关知识,在Begin-End 区域内进行代码补充,完成以下需求:

pandasseries得到的countries_counts

  • 选择索引标签为India的项。将结果赋值给变量india

  • 按顺序,选择索引标签USACanadaMexico的项。将结果赋值给变量north_america

 

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None
# 请在此添加代码
#********** Begin **********#
countries = f500['country']
countries_counts = countries.value_counts()
india = countries_counts["India"]
north_america = countries_counts[["USA","Canada","Mexico"]]
print(india)
print(north_america)
#********** End **********#

 

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值