Educoder python pandas介绍 第7关:总的挑战


任务描述

本关任务:综合运用前面所学知识完成任务。

相关知识

让我们来看看我们在这次实训中学到的所有不同的标签选择方法的总结:

按标签选择 显式语法 快捷方法
从dataframe选择单列 df.loc[:,"col1"] df["col1"]
从dataframe选择一些列 df.loc[:,["col1","col7"]] df[["col1","col7"]]
从dataframe中用切片选择列 df.loc[:,"col1":"col4"]  
从dataframe选择单行 df.loc["row4"]  
从dataframe选择一些列 df.loc[["row1", "row8"]]  
从dataframe中用切片选择列 df.loc["row3":"row5"] df["row3":"row5"]
从series中选择单项 s.loc["item8"] s["item8"]
从series中选择一些项 s.loc[["item1","item7"]] s[["item1","item7"]]
从series中用切片选择项 s.loc["item2":"item4"] s["item2":"item4"]

接下来,让我们来练习我们所学到的知识!

编程要求

请仔细阅读右侧代码,结合相关知识,在Begin-End 区域内进行代码补充,完成以下需求:

f500中选择数据:

  • 创建一个新的变量big_movers

    • 索引是AvivaHPJD.comBHP Billiton的行,按这个顺序;

    • rankprevious_rank列,按这个顺序。

  • 创建一个新的变量bottom_companies

    • National Grid到包括AutoNation的所有行;

    • ranksectorcountry列。

import pandas as pd
f500 = pd.read_csv('f500.csv',index_col=0)
f500.index.name = None
# 请在此添加代码
#********** Begin **********#
big_movers = f500.loc[["Aviva", "HP", "JD.com", "BHP Billiton"], ["rank","previous_rank"]]
bottom_companies = f500.loc["National Grid":"AutoNation", ["rank","sector","country"]]
print(big_movers)
print(bottom_companies)
#********** End **********#

 

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值