opencv分水岭算法源码难点解释

本博客主要解释opencv中分水岭算法源码中的难点:1)将点push到队列中;2)将点pop出队列。有关分水岭算法原理网上有很多解释,请自行查阅,这里不解释。

下面三张图就是push和pop过程演示(不知道为何图片插进来就自动旋转了,尴尬疑问,如果人懂,望一定告知解决方法,谢谢)

下面是opencv中分水岭算法源码:

void cv::watershed( InputArray _src, InputOutputArray _markers )
{
    CV_INSTRUMENT_REGION()

    // Labels for pixels
    const int IN_QUEUE = -2; // Pixel visited
    const int WSHED = -1; // Pixel belongs to watershed

    // possible bit values = 2^8
    const int NQ = 256;

    Mat src = _src.getMat(), dst = _markers.getMat();
    Size size = src.size();

    // Vector of every created node
    std::vector<WSNode> storage;
    int free_node = 0, node;
    // Priority queue of queues of nodes
    // from high priority (0) to low priority (255)
    WSQueue q[NQ];
    // Non-empty queue with highest priority
    int active_queue;
    int i, j;
    // Color differences
    int db, dg, dr;
    int subs_tab[513];

    // MAX(a,b) = b + MAX(a-b,0)
    #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
    // MIN(a,b) = a - MAX(a-b,0)
    #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])

    // Create a new node with offsets mofs and iofs in queue idx
    #define ws_push(idx,mofs,iofs)          \
    {                                       \
        if( !free_node )                    \
            free_node = allocWSNodes( storage );\
        node = free_node;                   \
        free_node = storage[free_node].next;\
        storage[node].next = 0;             \
        storage[node].mask_ofs = mofs;      \
        storage[node].img_ofs = iofs;       \
        if( q[idx].last )                   \
            storage[q[idx].last].next=node; \
        else                                \
            q[idx].first = node;            \
        q[idx].last = node;                 \
    }

    // Get next node from queue idx
    #define ws_pop(idx,mofs,iofs)           \
    {                                       \
        node = q[idx].first;                \
        q[idx].first = storage[node].next;  \
        if( !storage[node].next )           \
            q[idx].last = 0;                \
        storage[node].next = free_node;     \
        free_node = node;                   \
        mofs = storage[node].mask_ofs;      \
        iofs = storage[node].img_ofs;       \
    }

    // Get highest absolute channel difference in diff
    #define c_diff(ptr1,ptr2,diff)           \
    {                                        \
        db = std::abs((ptr1)[0] - (ptr2)[0]);\
        dg = std::abs((ptr1)[1] - (ptr2)[1]);\
        dr = std::abs((ptr1)[2] - (ptr2)[2]);\
        diff = ws_max(db,dg);                \
        diff = ws_max(diff,dr);              \
        assert( 0 <= diff && diff <= 255 );  \
    }

    CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
    CV_Assert( src.size() == dst.size() );

    // Current pixel in input image
    const uchar* img = src.ptr();
    // Step size to next row in input image
    int istep = int(src.step/sizeof(img[0]));

    // Current pixel in mask image
    int* mask = dst.ptr<int>();
    // Step size to next row in mask image
    int mstep = int(dst.step / sizeof(mask[0]));

    for( i = 0; i < 256; i++ )
        subs_tab[i] = 0;
    for( i = 256; i <= 512; i++ )
        subs_tab[i] = i - 256;

    // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
    for( j = 0; j < size.width; j++ )
        mask[j] = mask[j + mstep*(size.height-1)] = WSHED;

    // initial phase: put all the neighbor pixels of each marker to the ordered queue -
    // determine the initial boundaries of the basins
    for( i = 1; i < size.height-1; i++ )
    {
        img += istep; mask += mstep;
        mask[0] = mask[size.width-1] = WSHED; // boundary pixels

        for( j = 1; j < size.width-1; j++ )
        {
            int* m = mask + j;
            if( m[0] < 0 ) m[0] = 0;
            if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
            {
                // Find smallest difference to adjacent markers
                const uchar* ptr = img + j*3;
                int idx = 256, t;
                if( m[-1] > 0 )
                    c_diff( ptr, ptr - 3, idx );
                if( m[1] > 0 )
                {
                    c_diff( ptr, ptr + 3, t );
                    idx = ws_min( idx, t );
                }
                if( m[-mstep] > 0 )
                {
                    c_diff( ptr, ptr - istep, t );
                    idx = ws_min( idx, t );
                }
                if( m[mstep] > 0 )
                {
                    c_diff( ptr, ptr + istep, t );
                    idx = ws_min( idx, t );
                }

                // Add to according queue
                assert( 0 <= idx && idx <= 255 );
                ws_push( idx, i*mstep + j, i*istep + j*3 );
                m[0] = IN_QUEUE;
            }
        }
    }

    // find the first non-empty queue
    for( i = 0; i < NQ; i++ )
        if( q[i].first )
            break;

    // if there is no markers, exit immediately
    if( i == NQ )
        return;

    active_queue = i;
    img = src.ptr();
    mask = dst.ptr<int>();

    // recursively fill the basins
    for(;;)
    {
        int mofs, iofs;
        int lab = 0, t;
        int* m;
        const uchar* ptr;

        // Get non-empty queue with highest priority
        // Exit condition: empty priority queue
        if( q[active_queue].first == 0 )
        {
            for( i = active_queue+1; i < NQ; i++ )
                if( q[i].first )
                    break;
            if( i == NQ )
                break;
            active_queue = i;
        }

        // Get next node
        ws_pop( active_queue, mofs, iofs );

        // Calculate pointer to current pixel in input and marker image
        m = mask + mofs;
        ptr = img + iofs;

        // Check surrounding pixels for labels
        // to determine label for current pixel
        t = m[-1]; // Left
        if( t > 0 ) lab = t;
        t = m[1]; // Right
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[-mstep]; // Top
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[mstep]; // Bottom
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }

        // Set label to current pixel in marker image
        assert( lab != 0 );
        m[0] = lab;

        if( lab == WSHED )
            continue;

        // Add adjacent, unlabeled pixels to corresponding queue
        if( m[-1] == 0 )
        {
            c_diff( ptr, ptr - 3, t );
            ws_push( t, mofs - 1, iofs - 3 );
            active_queue = ws_min( active_queue, t );
            m[-1] = IN_QUEUE;
        }
        if( m[1] == 0 )
        {
            c_diff( ptr, ptr + 3, t );
            ws_push( t, mofs + 1, iofs + 3 );
            active_queue = ws_min( active_queue, t );
            m[1] = IN_QUEUE;
        }
        if( m[-mstep] == 0 )
        {
            c_diff( ptr, ptr - istep, t );
            ws_push( t, mofs - mstep, iofs - istep );
            active_queue = ws_min( active_queue, t );
            m[-mstep] = IN_QUEUE;
        }
        if( m[mstep] == 0 )
        {
            c_diff( ptr, ptr + istep, t );
            ws_push( t, mofs + mstep, iofs + istep );
            active_queue = ws_min( active_queue, t );
            m[mstep] = IN_QUEUE;
        }
    }
}




相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页