dual svm

本文探讨了支持向量机(SVM)的对偶形式,旨在解决优化问题对特征维度的依赖。通过拉格朗日乘子和KKT条件,将原始的最小化问题转化为关于α的二次规划问题,从而实现对高维特征的降维处理。对偶SVM主要适用于样本不多但特征复杂的场景,它通过最大化α(支持向量)来确定权重向量w和偏置b,构建最终模型。
摘要由CSDN通过智能技术生成

SVM通过margin找到最佳的超平面,利用这一特性,我们可保证对于问题蕴含复杂的规则可以得到刻画,也能保证模型不会太复杂(dvc可以得到控制),所以SVM很适合解决问题样本不是很多,但是用简单hypothesis无法刻画的问题!
在上一节推倒的基础SVM问题上,我们加上特征转化,现在我们需要优化的二次问题变数是转化后的特征数+1,我们希望优化的问题不依赖特征数,这将是本部分的主要内容。
在这里插入图片描述
目标是推导dual SVM,解决优化问题中对特征维数的依赖:
在这里插入图片描述
对于带有条件的最小化问题,我们可以利用lagrange multiplier将约束写入优化方程中,再利用一些数学推导,可得到原来问题不带约束的另一种表达,注意此时引入α要大于等于0(KKT中的一个限制):
在这里插入图片描述
此时我们优化的问题既有最大化问题,又有最小化问题,接下来我们要使用一些手段消去其中一个优化问题!
通过数学上的推导,我们可以得到交换最小化和最大化的次序后与原来优化方程的关系,是原来问题的下限,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值