在采用梯度下降求解参数的过程中,各特征的范围相近时,算法的收敛速度更快,因此常常先对训练集的数据进行特征缩放,使用的方法一般为归一化(0-1)和标准化,注意的时y不需要特征缩放,特别的,训练机进行特征缩放的特征测试集的数据同样要特征缩放(如何缩放?????疑惑???)
机器学习-特征缩放
最新推荐文章于 2024-03-14 22:43:36 发布
在采用梯度下降求解参数的过程中,各特征的范围相近时,算法的收敛速度更快,因此常常先对训练集的数据进行特征缩放,使用的方法一般为归一化(0-1)和标准化,注意的时y不需要特征缩放,特别的,训练机进行特征缩放的特征测试集的数据同样要特征缩放(如何缩放?????疑惑???)

被折叠的 条评论
为什么被折叠?