第一章:点云中的滤波问题---Filters

本文介绍了点云滤波的各种方法,包括上采样、降采样以及不同的滤波技术。上采样中提到了双边滤波和中值滤波等方法,用于增加点云的密度。降采样则包含Radious Outlier Removal、Statistical Outlier Removal和Voxel Grid Downsampling等,旨在减少点云数据量。此外,还讨论了Farthest Point Sampling、Normal Space Sampling等特殊降采样方法,以及基于深度学习的降采样方法,并提到了Chamfer Loss在点云重构中的应用。
摘要由CSDN通过智能技术生成

滤波的范围非常的广泛,像噪声去除,降采样,上采样,平滑等等都可以叫做滤波。

上采样是一个比较罕见的东西,上采样就是没有的东西我把他创造出来,就是创造信息,其实是不可以创造信息的,只是说经过已有的信息,怎么去估算未知的地方可能的信息。如上图,就是对激光雷达的图进行了一个上采样,最上边的一层是吧激光雷达的图投影到了图像上,可以看到一些很小的很稀疏的点,但是他没有办法把每一个像素都填满,比如我们在做多传感器融合的时候我们希望图片上的每一个像素都能够带一个深度,这样图片所携带的信息就非常的丰富了,比如说既有深度,又有纹理(RGB嘛),但是激光雷达的点那么稀疏,我们怎么把他变的稠密一点呢?其中一个方法就是Bilateral Filter(双边滤波)。

上图中BF就代表了使用双边滤波对点云做上采样的结果(可以看出他并不是完美的,从图中可以看出这个电线杆子经过BF之后就变粗了很多,但是也有一些非常好的地方,比如说车的轮廓被保存的非常的好)。上图中还使用了一些MED(median filtering中值滤波)。以及AVE(平均值滤波)等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值