mmd_0912
码龄8年
关注
提问 私信
  • 博客:136,138
    136,138
    总访问量
  • 47
    原创
  • 1,059,723
    排名
  • 1,369
    粉丝
  • 15
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-03-19
博客简介:

writ的博客

博客描述:
writ
查看详细资料
个人成就
  • 获得86次点赞
  • 内容获得9次评论
  • 获得452次收藏
  • 代码片获得1,290次分享
  • 博客总排名1,059,723名
创作历程
  • 1篇
    2024年
  • 30篇
    2023年
  • 2篇
    2022年
  • 2篇
    2020年
  • 10篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • CPP
    5篇
  • dl
    6篇
  • 网络解析
    4篇
  • opencv
    2篇
  • 数据库
    1篇
  • 安装-指令-常识汇总
    8篇
  • python
    6篇
兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 人工智能
    opencvtensorflowpytorch
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Android Studio无法下载

如果直接点击无法下载,就复制下载链接,将https修改为http即可下载。Android Studio历史版本下载链接。
原创
发布博客 2024.04.18 ·
1415 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

dl----pytorch基础知识

从上可见大多数操作并不会修改tensor的数据,只是修改tensor的头信息,这种做法减少了内存的占用,并且更加节省了时间。autograd 模块的核心数据结构是 Variable,它是对 tensor 的封装,并且会记录 tensor 的操作记录用来构建计算图。expand或expand_as:重复数组,实现当输入的数组的某个维度的长度为1时,计算时沿此维度复制扩充成一样的形。a是二维,b是三维,所在现在较小的a前面补1(等价于a.unsqueeze(0),a的形状变成(0,2,3))
原创
发布博客 2023.07.04 ·
898 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python----多进程/生产者消费者模型

生产者和消费者之间通过共享的缓冲区进行通信。当缓冲区为空时,消费者将等待生产者生成数据并放入缓冲区中。当缓冲区已满时,生产者将等待消费者取出数据后再继续生产。在生产者消费者模式中,有两种角色:生产者和消费者。生产者负责生成数据,并将数据放入一个共享的缓冲区中,而消费者则从缓冲区中取出数据并进行处理。生产者消费者是一种常见的并发模式,用于解决多线程或多进程之间的数据交换和协作问题。
原创
发布博客 2023.06.30 ·
1044 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

python----装饰器

在这个示例中,timer装饰器接受一个函数作为参数,并返回一个新的函数wrapper。wrapper函数在调用原始函数之前记录开始时间,然后调用原始函数,最后记录结束时间并计算执行时间。装饰器本质上是一个函数或类,它可以接受一个函数或类作为参数,并返回一个新的函数或类。装饰器可以在不修改原始函数或类定义的情况下,动态地添加额外的功能或行为。函数的增强:可以在不修改原始函数定义的情况下,为函数添加额外的功能,比如日志记录、性能分析、输入验证等。类的增强:可以为类的方法添加额外的功能,比如权限验证、缓存等。
原创
发布博客 2023.06.29 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python----钻石继承

当调用d.method()时,会按照方法解析顺序(Method Resolution Order, MRO)依次调用D、B、C和A的method方法。因此,在使用钻石继承时,需要注意继承关系和方法调用的顺序,以避免产生意外的结果。钻石继承是指在Python中,存在一种继承关系,其中一个子类继承自两个不同的父类,而这两个父类又共同继承自同一个父类。在这个示例中,类A是顶级父类,类B和类C都继承自A。最后,类D继承自B和C,形成了钻石继承的结构。
原创
发布博客 2023.06.29 ·
766 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

网络解析----yolox

Dynamic k 的关键在于如何确定k,有些方法通过其他方式间接实现了动态 k ,比如 ATSS、PAA ,甚至 RetinaNet ,同时,k的估计依然可以是 prediction aware 的,我们具体的做法是首先计算每个目标最接近的10个预测,然后把这个 10 个预测与 gt 的 iou 加起来求得最终的k,很简单有效,对 10 这个数字也不是很敏感,在 5~15 调整几乎没有影响。3)reg_output:主要对目标框的坐标信息(x,y,w,h)进行预测,因此大小为20204。
原创
发布博客 2023.06.27 ·
167 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络解析----PP-YOLO

2021年4月提出了PP-YOLOv2(原文链接:https://arxiv.org/abs/2104.10419 ),性能超越同等参数的YOLOv4-CSP和YOLOv5-l,7月份旷视提出了YOLOX,百度团队优化了PP-YOLOv2,提出了PP-YOLOE。YOLOX中认为按聚类方式确定最优Anchor尺寸局限于特定领域,难以推广,此外还增加了head的复杂度与每张图像的预测数量,故采用了Anchor-free方式,PP-YOLOE中亦采用Anchor-free方式。
原创
发布博客 2023.06.25 ·
516 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络解析----faster rcnn

2.提取特征:使用特定的卷积神经网络模型(如VGG,ResNet等)作为特征提取器,对输入的图像进行特征提取。特征提取的方式可以是预训练的模型,也可以是现场训练的模型。标注包括每个物体的位置和类别信息,在训练阶段使用标注信息来计算损失并更新模型。6.损失计算:将分类和边框回归的结果与标注信息进行比较,计算分类损失和边框回归损失,并将两者相加得到总损失。5.边框回归:对候选区域进行边框回归,得出物体的准确位置(即左上角坐标和右下角坐标)。4.区域分类:对候选区域进行分类,得出每个候选区域包含物体的类别概率。
原创
发布博客 2023.06.21 ·
1707 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

网络解析----yolov3网络解析

检测头是由三个卷积层和两个全连接层组成,用于检测目标的位置和类别。Yolov3的网络结构与Yolov2相似,都采用了Darknet架构,但Yolov3使用了更多的卷积层和更大的输入尺寸,从而使得网络更深更广,并且能够检测到更小的物体。此外,Yolov3还使用了三个不同尺度的特征图来检测不同大小的物体,从而提高了检测的准确性和召回率。此外,Yolov3还引入了一种新的技术,称为"Bag of Freebies",该技术通过数据增强、改进的训练策略和更好的网络初始化来提高模型的性能。原始yolov3的网络。
原创
发布博客 2023.06.21 ·
1866 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

python----常用知识点

1.简述解释型和编译型编程语言解释型语言是在运行程序的时候才翻译,每执行一次,要翻译一次,效率较低。 编译型就是直接编译成机型可以执行的,只翻译一次,所以效率相对来说较高2. Python3 和 Python2 的区别Python 2的str类型是字节串(ASCII),同3中的bytes,Python3 中默认的字符串类型是 Unicode。Python 2中的print和exec都是关键字,Python 3中变成了函数,必须加括号。Python 2中的不等号<>在Python 3中被
原创
发布博客 2023.06.20 ·
126 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

常识----LAN,WLAN,VLAN,VPN,TCP,UDP,UPnP

与TCP不同,UDP不对数据传输的可靠性做出保证,但具有较低的延迟。VPN(Virtual Private Network):虚拟私有网络是一种通过使用加密和安全隧道技术在公共网络上创建私有连接的网络。VLAN(Virtual Local Area Network):虚拟局域网是一种逻辑上将不同物理位置的网络设备组合在一起的技术。WLAN(Wireless Local Area Network):无线局域网是一种使用无线通信技术连接设备的局域网,因此可以在范围内无线连接到网络。
原创
发布博客 2023.06.18 ·
2042 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

常识----Linux多线程服务器端编程

在Linux操作系统中,当进程调用fork()系统调用创建一个子进程时,该子进程会被复制出一个完整的进程实体,包括了该进程的代码段、数据段、进程堆栈、文件描述符表、信号处理程序等,但是这些数据结构并不是简单地被完全复制的,其实是通过一种“读时共享、写时复制”的技术进行处理的。自旋锁是一种忙等锁,当有线程占用锁的时候,其他线程会不停地尝获取锁,直到锁被释放。在Linux中,自旋锁的实现使用了原子操作指令(如CAS、XCHG等),当线程需要获取锁时,它会不停地尝试修改锁的状态,直到成功修改为锁可用。
原创
发布博客 2023.06.16 ·
896 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

常识----计算机网络

1.OSI 7层网络模型:应用层、表示层、会话层、运输层、网络层、链路层、物理层OSI(开放式系统互连)参考模型是一个用于描述计算机网络通信的框架。它将网络通信分为七个不同的层级,每个层级负责不同的功能。以下是每个层级的简要介绍:**物理层(Physical Layer):**这是网络通信的最底层,负责传输原始的比特流。它定义了物理上的数据传输媒介,如光纤、电缆和无线信号等。**链路层(Data Link Layer):**链路层将物理层提供的比特流划分为数据帧,并在相邻网络节点之间进行可靠的数据传输。它
原创
发布博客 2023.06.15 ·
1599 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

常识----IP地址,子网掩码,网关,DNS,mac地址

网关是一个网络设备,用于将数据包从一个网络发送到另一个网络。默认网关一般填写 192.168.x.1 ,默认网关必须是电脑自己所在的网段中的 IP 地址,而不能填写其他网段中的 IP 地址。DNS(Domain Name System)是一个分层的命名系统,用于将域名转换为IP地址。子网掩码是一个32位的二进制数字,用于指定一个IP地址的网络部分和主机部分。IP地址是一个32位的二进制数字,用于标识网络上的设备。MAC地址是一个48位的二进制数字,用于标识网络上的设备。它通常是网络接口卡的硬件地址。
原创
发布博客 2023.06.11 ·
344 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

常识----DHCP-无线中继-静态IP-PPPoE

无线中继是一种无线网络设备,它可以扩展现有无线网络的覆盖范围。静态IP:静态IP是一种手动分配IP地址的方式,适用于需要对网络中的设备进行精确控制和管理的场景,如服务器、网络设备等。无线中继:无线中继是一种扩展现有无线网络覆盖范围的设备,适用于需要扩大无线网络覆盖范围的场景,如大型办公室、酒店等。DHCP:动态主机配置协议是一种自动分配IP地址的协议,适用于需要快速配置大量计算机的场景,如企业、学校等。PPPoE:点对点协议是一种连接到互联网的协议,适用于需要连接到宽带网络的场景,如家庭、办公室等。
原创
发布博客 2023.06.11 ·
838 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络解析----yolov4网络解析

网络解析----yolov4解析
原创
发布博客 2023.06.02 ·
1187 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

python----opencv实操

opencv python 版练习
原创
发布博客 2023.03.22 ·
136 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

CPP----高质量编程

内联函数,编译器在符号表里放入函数的声明,包括名字,参数类型和返回值类型,如果编译器没有发现内联函数存在错误,那么该函数的代码也被放入符号表里,在调用一个内联函数时,编译器首先检查调用是否正确,进行类型安全检查,或者进行自动类型转换,如果正确,内联函数的代码就会直接替换函数的调用,于是省去了函数调用的开销。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器 使 _p =p,如果函数体内的程序修改了 _p的内容,就导致参数p的内容作相应的修改,这就是指针可以作为输出参数的原因。
原创
发布博客 2023.03.14 ·
928 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

dl----算法常识100例

1.depthwise卷积&&Pointwise卷积depthwise与pointwise卷积又被称为Depthwise Separable Convolution,与常规卷积不同的是此卷积极大地减少了参数数量,同时保持了模型地精度,depthwise操作是先进行二维平面上地操作,然后利用pointwise进行维度上的更新。2. 1*1的卷积核有什么作用实现不同通道数据之间的计算,降维、升维、跨通道交互、增加非线性,大大减少了参数量,其次,增加的1X1卷积后面也会跟着有非线性激励,这样同时也能够提升网
原创
发布博客 2023.03.09 ·
1539 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

python----马赛克|毛玻璃|高斯|中值|均值算法

马赛克,毛玻璃算法
原创
发布博客 2023.02.22 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多