文章目录
- 一. Guava Cache介绍
- 二、Guava Cache使用
- 1. 构建缓存对象 (CacheBuilder)
- 2. 设置初始化容量和最大存储 (initialCapacity, maximumSize)
- 3. 设置过期时间 (expireAfterAccess, expireAfterWrite)
- 4. 弱软引用 (weakKeys, weakValues, softValues)
- 5. 主动清除缓存 (invalidateAll, invalidate)
- 6. 移除监听器 (RemovalListener)
- 7. 自动加载 (重点)
- 8. 统计信息 (recordStats)
- 9. LoadingCache (重点)
- 10. 并发度 (concurrencyLevel)
- 11. 数据清除权重 (maximumWeight, weigher)
- Guava Cache封装工具类
- 三、 常见缓存数据淘汰算法( FIFO + LRU + LFU)
- 四、Guava Cache原理
一. Guava Cache介绍
Guava Cache是在内存中缓存数据(JVM缓存/本地缓存)
,相比较于数据库或redis存储,访问内存中的数据会更加高效
。Guava官网介绍,下面的这几种情况可以考虑使用Guava Cache:
对性能有非常高的要求
愿意消耗一些内存空间来提升速度
预料到某些键会被多次查询 (热点数据)
缓存中存放的数据总量不会超出内存容量
所以,可以将程序频繁用到的少量数据存储到Guava Cache中,以改善程序性能。下面对Guava Cache的用法进行详细的介绍。
1. Guava cache 优势 (重点)
缓存过期和淘汰机制
- GuavaCache中可以设置
Key
的过期时间,包括访问过期
和创建过期
- GuavaCache在缓存容量(
maximumSize
)达到指定大小时,采用LRU+FIFO
的方式,将不常使用的键值从Cache中删除
- GuavaCache中可以设置
并发处理能力
- GuavaCache类似CurrentHashMap,是线程安全的。
- 提供了设置并发级别的api (
concurrencyLevel(5)
),使得缓存支持并发的写入和读取
采用
分离锁机制
,分离锁能够减小锁力度,提升并发能力; 分离锁是分拆锁定,把一个集合看分成若干partition, 每个partiton一把锁。ConcurrentHashMap就是分了16个区域,这16个区域之间是可以并发的。GuavaCache采用Segment做分区。更新锁定
在缓存中查询某个key,如果不存在,则查源数据,并回填缓存
- GuavaCache可以在
CacheLoader
的load
方法中加以控制,对同一个key,只让一个请求去读源数据并回填缓存,其他请求阻塞等待。
- 集成数据源 (在缓存中读取不到时,可以去读数据源 并写入到缓存中)
- 在业务中操作缓存,都会
操作缓存和数据源
两部分GuavaCache的get可以集成数据源,在从缓存中读取不到时可以从数据源中读取数据并回填缓存
- 在业务中操作缓存,都会
- 监控缓存加载/命中情况
- 统计缓存信息,
recordStats()
, 开启统计信息开关, 查看通过cache对象stats
方法
- 统计缓存信息,
二、Guava Cache使用
1. 构建缓存对象 (CacheBuilder)
接口Cache
代表一块缓存,它有如下方法:
public interface Cache<K, V> {
V get(K key, Callable<? extends V> valueLoader) throws ExecutionException;
ImmutableMap<K, V> getAllPresent(Iterable<?> keys);
void put(K key, V value);
void putAll(Map<? extends K, ? extends V> m);
void invalidate(Object key);
void invalidateAll(Iterable<?> keys);
void invalidateAll();
long size();
CacheStats stats();
ConcurrentMap<K, V> asMap();
void cleanUp();
}
可以通过CacheBuilder类
构建一个缓存对象,CacheBuilder
类采用builder
设计模式,它的每个方法都返回CacheBuilder本身,直到build
方法被调用。构建一个缓存对象代码如下:
public class StudyGuavaCache {
public static void main(String[] args) {
Cache<String,String> cache = CacheBuilder.newBuilder().build();
cache.put("word","Hello Guava Cache");
System.out.println(cache.getIfPresent("word"));
}
}
上面的代码通过CacheBuilder.newBuilder().build()
这句代码创建了一个Cache缓存对象
,并在缓存对象中存储了key为word,value为Hello Guava Cache的一条记录。
可以看到Cache
非常类似于JDK
中的Map
,但是相比于Map,Guava Cache提供了很多更强大的功能。
2. 设置初始化容量和最大存储 (initialCapacity, maximumSize)
Guava Cache可以在 构建缓存对象时 指定缓存所能够存储的最大记录数量。
当Cache
中的记录数量达到最大值后再调用put
方法向其中添加对象,Guava会先从当前缓存的对象记录中选择一条删除掉,腾出空间后再将新的对象存储到Cache中。
public class StudyGuavaCache {
public static void main(String[] args) {
Cache<String,String> cache = CacheBuilder.newBuilder()
// 指定用于缓存的hash table最低总规模; 可以不设置
.initialCapacity(int initialCapacity)
.maximumSize(2)
.build();
cache.put("key1","value1");
cache.put("key2","value2");
cache.put("key3","value3");
System.out.println("第一个值:" + cache.getIfPresent("key1"));
System.out.println("第二个值:" + cache.getIfPresent("key2"));
System.out.println("第三个值:" + cache.getIfPresent("key3"));
}
}
上面代码在构造缓存对象时,通过CacheBuilder
类的maximumSize
方法指定Cache
最多可以存储两个
对象,然后调用Cache的put方法向其中添加了三个对象。
程序执行结果如下图所示,可以看到第三条对象记录的插入,导致了第一条对象记录被删除:
第一个值:null
第二个值:value2
第三个值:value3
3. 设置过期时间 (expireAfterAccess, expireAfterWrite)
在构建Cache
对象时,可以通过CacheBuilder
类的expireAfterAccess
和expireAfterWrite
两个方法为缓存中的对象指定过期时间,过期的对象将会被缓存自动删除。
- expireAfterWrite 指定对象被写入到缓存后多久过期
- expireAfterAccess 指定对象多久没有被访问后过期。
public class StudyGuavaCache {
public static void main(String[] args) throws Exception {
Cache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(2)
.expireAfterWrite(3, TimeUnit.SECONDS)
.build();
cache.put("key1", "value1");
int time = 1;
while (true) {
System.out.println("第" + time++ + "次取到key1的值为:" + cache.getIfPresent("key1"));
Thread.sleep(1000);
}
}
}
上面的代码在构造Cache对象
时,通过CacheBuilder
的expireAfterWrite
方法指定put
到Cache中的对象在3秒后会过期。在Cache对象中存储一条对象记录后,每隔1秒读取一次这条记录。程序运行结果如下图所示,可以看到,前三秒可以从Cache中获取到对象,超过三秒后,对象从Cache中被自动删除。
第1次取到key1的值为:value1
第2次取到key1的值为:value1
第3次取到key1的值为:value1
第4次取到key1的值为:null
第5次取到key1的值为:null
第6次取到key1的值为:null
第7次取到key1的值为:null
第8次取到key1的值为:null
第9次取到key1的值为:null
第10次取到key1的值为:null
第11次取到key1的值为:null
下面代码是expireAfterAccess的例子:
public class StudyGuavaCache {
public static void main(String[] args) throws InterruptedException {
Cache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(2)
.expireAfterAccess(3, TimeUnit.SECONDS)
.build();
cache.put("key1", "value1");
int time = 1;
while (true) {
Thread.sleep(time * 1000L);
System.out.println("睡眠" + time++ + "秒后取到key1的值为:" + cache.getIfPresent("key1"));
}
}
}
通过CacheBuilder
的expireAfterAccess
方法指定Cache中存储的对象如果超过3秒没有被访问就会过期。
while中的代码每sleep一段时间就会访问一次Cache中存储的对象key1,每次访问key1之后下次sleep的时间会加长一秒。程序运行结果如下图所示,从结果中可以看出,当超过3秒没有读取key1对象之后,该对象会自动被Cache删除。
睡眠1秒后取到key1的值为:value1
睡眠2秒后取到key1的值为:value1
睡眠3秒后取到key1的值为:null
睡眠4秒后取到key1的值为:null
睡眠5秒后取到key1的值为:null
睡眠6秒后取到key1的值为:null
睡眠7秒后取到key1的值为:null
睡眠8秒后取到key1的值为:null
睡眠9秒后取到key1的值为:null
4. 弱软引用 (weakKeys, weakValues, softValues)
-
weakKeys
将缓存中的key设置成weakKey模式
。默认情况下,会使用“强关系”来保存key值。当设置为weakKey时,会使用(==)来匹配key值。在使用weakKey的情况下,数据可能会被GC。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。 -
weakValues
将缓存中的数据设置为weakValues模式
。启用weakValue设置时,某些数据会被GC。默认情况下,会使用“强关系”来保存key值。当设置为weakValue时,会使用(==)来匹配value值。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。 -
softValues
将缓存中的数据设置为softValues模式
。使用这个模式时,所有的数据都使用SoftReference类对缓存中的数据进行包裹(就是在SoftReference实例中存储真实的数据)。使用SoftReference包裹的数据,会被全局垃圾回收管理器托管,按照LRU的原则来定期GC数据。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。
// 当key和缓存元素都不再存在其他强引用的时候驱逐
LoadingCache<Key, Graph> graphs = Caffeine.newBuilder()
.weakKeys()
.weakValues()
.build(key -> createExpensiveGraph(key));
// 当进行GC的时候进行驱逐
LoadingCache<Key, Graph> graphs = Caffeine.newBuilder()
.softValues()
.build(key -> createExpensiveGraph(key));
可以通过weakKeys
和weakValues
方法指定Cache只保存对缓存记录key和value的弱引用
。
这样当没有其他强引用指向key和value时,key和value对象就会被垃圾回收器回收。
public class StudyGuavaCache {
public static void main(String[] args) throws InterruptedException {
Cache<String, Object> cache = CacheBuilder.newBuilder()
.maximumSize(2)
.weakValues()
.build();
Object value = new Object();
cache.put("key1", value);
value = new Object(); //原对象不再有强引用
System.gc();
System.out.println(cache.getIfPresent("key1"));
}
}
null
上面代码的打印结果是null。构建Cache
时通过weakValues方法
指定Cache只保存记录值
的一个弱引用
。当给value引用赋值一个新的对象之后,就不再有任何一个强引用指向原对象。System.gc()
触发垃圾回收后,原对象就被清除了。
5. 主动清除缓存 (invalidateAll, invalidate)
可以调用Cache
的invalidateAll
或invalidate
方法显示删除Cache中的记录。
- invalidate方法一次只能删除Cache中一个记录,接收的参数是要删除记录的key。
- invalidateAll方法可以批量删除Cache中的记录,当没有传任何参数时,invalidateAll方法将清除Cache中的全部记录。invalidateAll也可以接收一个
Iterable
类型的参数,参数中包含要删除记录的所有key值。
下面代码对此做了示例:
public class StudyGuavaCache {
public static void main(String[] args) throws InterruptedException {
Cache<String, String> cache = CacheBuilder.newBuilder().build();
cache.put("key1", "value1");
cache.put("key2", "value2");
cache.put("key3", "value3");
// cache.invalidate("key1"); // 清楚key1这个缓存
List<String> list = Lists.newArrayList("key1", "key2");
cache.invalidateAll(list); //批量清除list中全部key对应的记录
System.out.println(cache.getIfPresent("key1"));
System.out.println(cache.getIfPresent("key2"));
System.out.println(cache.getIfPresent("key3"));
}
}
代码中构造了一个集合list
用于保存要删除记录的key值,然后调用invalidateAll
方法批量删除key1和key2对应的记录,只剩下key3对应的记录没有被删除
null
null
value3
6. 移除监听器 (RemovalListener)
可以为Cache对象
添加一个移除监听器,这样当有记录(缓存)被删除时可以感知到这个事件。
public class StudyGuavaCache {
public static void main(String[] args) {
RemovalListener<String, String> listener = new RemovalListener<String, String>() {
public void onRemoval(RemovalNotification<String, String> notification) {
System.out.println("[" + notification.getKey() + ":" + notification.getValue() + "] is removed!");
}
};
Cache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(3)
.removalListener(listener)
.build();
// 因为maximumSize为3, 所以cache只能存三个缓存,后面的会覆盖前面的缓存
cache.put("key1", "value1");
cache.put("key2", "value2");
cache.put("key3", "value3");
cache.put("key4", "value3");
cache.put("key5", "value3");
cache.put("key6", "value3");
cache.put("key7", "value3");
cache.put("key8", "value3");
}
}
removalListener
方法为Cache指定了一个移除监听器,这样当有记录从Cache中被删除时,监听器listener
就会感知到这个事件。程序运行结果如下图所示:
[key1:value1] is removed!
[key2:value2] is removed!
[key3:value3] is removed!
[key4:value3] is removed!
[key5:value3] is removed!
7. 自动加载 (重点)
Cache的get
方法有两个参数,第一个参数是要从Cache中获取缓存的key
,第二个参数是一个Callable对象。
- 当缓存中已经存在key对应的记录时,get方法直接返回key对应的记录。
- 如果缓存中
不包含key
对应的记录,Guava会启动一个线程执行Callable
对象中的call方法,call方法的返回值
会作为key对应的值
被存储到缓存中,并且被get方法返回。
下面是一个多线程的例子:
public class StudyGuavaCache {
private static final Cache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(3)
.build();
public static void main(String[] args) {
new Thread(() -> {
System.out.println("thread1");
try {
String value = cache.get("key", new Callable<String>() {
public String call() throws Exception {
System.out.println("load1"); //加载数据线程执行标志
Thread.sleep(1000); //模拟加载时间
return "auto load1 by Callable";
}
});
System.out.println("thread1 " + value);
} catch (ExecutionException e) {
e.printStackTrace();
}
}).start();
new Thread(() -> {
System.out.println("thread2");
try {
String value = cache.get("key", new Callable<String>() {
public String call() throws Exception {
System.out.println("load2"); //加载数据线程执行标志
Thread.sleep(1000); //模拟加载时间
return "auto load2 by Callable";
}
});
System.out.println("thread2 " + value);
} catch (ExecutionException e) {
e.printStackTrace();
}
}).start();
}
}
这段代码中有两个线程共享同一个Cache
对象,两个线程同时调用get
方法获取同一个key
对应的记录。
由于key对应的记录不存在,所以两个线程都在get方法处阻塞。此处在call方法中调用Thread.sleep(1000)模拟程序从外存加载数据的时间消耗。
代码的执行结果如下图:
thread1
thread2
load1
thread1 auto load1 by Callable
thread2 auto load1 by Callable
从结果中可以看出,虽然是两个线程同时调用get
方法,但只有一个get方法中的Callable
会被执行(没有打印出load2)。
Guava可以保证当有多个线程同时访问Cache中的一个key时,如果key对应的记录不存在,Guava只会启动一个线程执行get方法中Callable参数对应的任务加载数据存到缓存。当加载完数据后,任何线程中的get方法都会获取到key对应的值。
8. 统计信息 (recordStats)
可以对Cache
的命中率
、加载数据时间
等信息进行统计。在构建Cache对象时,可以通过CacheBuilder
的recordStats
方法开启统计信息的开关。开关开启后Cache会自动对缓存的各种操作进行统计,调用Cache的stats
方法可以查看统计后的信息
public class StudyGuavaCache {
public static void main(String[] args) {
Cache<String, String> cache = CacheBuilder.newBuilder()
.maximumSize(3)
.recordStats() //开启统计信息开关
.build();
cache.put("key1", "value1");
cache.put("key2", "value2");
cache.put("key3", "value3");
cache.put("key4", "value4");
cache.getIfPresent("key1");
cache.getIfPresent("key2");
cache.getIfPresent("key3");
cache.getIfPresent("key4");
cache.getIfPresent("key5");
cache.getIfPresent("key6");
System.out.println(cache.stats()); //获取统计信息
}
}
这些统计信息对于调整缓存设置是至关重要的,在性能要求高的应用中应该密切关注这些数据。
CacheStats{hitCount=3, missCount=3, loadSuccessCount=0, loadExceptionCount=0, totalLoadTime=0, evictionCount=1}
9. LoadingCache (重点)
LoadingCache
是Cache
的子接口,相比较于Cache,当从LoadingCache
中读取一个指定key
的记录时,如果该记录不存在,则LoadingCache
可以自动执行加载数据到缓存的操作。LoadingCache接口的定义如下:
public interface LoadingCache<K, V> extends Cache<K, V>, Function<K, V> {
V get(K key) throws ExecutionException;
V getUnchecked(K key);
ImmutableMap<K, V> getAll(Iterable<? extends K> keys) throws ExecutionException;
V apply(K key);
void refresh(K key);
@Override
ConcurrentMap<K, V> asMap();
}
与构建Cache类型的对象类似,LoadingCache
类型的对象也是通过CacheBuilder
进行构建,不同的是,在调用CacheBuilder
的build
方法时,必须传递一个CacheLoader
类型的参数,CacheLoader的load
方法需要我们提供实现。
当调用LoadingCache
的get
方法时,如果缓存不存在对应key的记录,则CacheLoader中的load方法会被自动调用从外存加载数据,load
方法的返回值会作为key
对应的value
存储到LoadingCache中,并从get
方法返回。
public class StudyGuavaCache {
public static void main(String[] args) throws ExecutionException {
CacheLoader<String, String> loader = new CacheLoader<>() {
public String load(String key) throws Exception {
Thread.sleep(1000); //休眠1s,模拟加载数据
System.out.println(key + " is loaded from a cacheLoader!");
return key + "'s value";
}
};
LoadingCache<String, String> loadingCache = CacheBuilder.newBuilder()
.maximumSize(3)
.build(loader);//在构建时指定自动加载器
// 如果获取key1的数据为空,则会自动调用上面load方法,并将数据缓存到key1中
loadingCache.get("key1");
loadingCache.get("key2");
loadingCache.get("key3");
}
}
key1 is loaded from a cacheLoader!
key2 is loaded from a cacheLoader!
key3 is loaded from a cacheLoader!
10. 并发度 (concurrencyLevel)
Guava Cache可以通过参数concurrencyLevel(5)
设置并发度,即可以同时写缓存的线程数。
public class StudyGuavaCache {
public static void main(String[] args) throws InterruptedException {
Cache<String,String> cache = CacheBuilder.newBuilder()
.maximumSize(3)
.concurrencyLevel(5)
.build();
cache.put("key1","value1");
cache.getIfPresent("key1");
}
}
11. 数据清除权重 (maximumWeight, weigher)
数据清除权重
。在缓存的使用中,这个权重的概率很难理解,简单的说就是:每个参数在进入缓存之前都会使用用户自定义的Weigher
对象来运算每条数据的权重值。
在进行数据释放时,会参考数据的权重值和设定的“maximumWeight”来确定哪条数据需要被回收。声明代码如下:
public class StudyGuavaCache {
public static void main(String[] args) throws ExecutionException {
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
}
}
Guava Cache封装工具类
import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;
import java.util.concurrent.TimeUnit;
public final class JvmCacheUtil {
public static final String JVM_CACHE_SPECIFY_GEO = "cache_specify_geo";
public static final String JVM_CACHE_BUILD_SQL = "cache_build_sql";
public static final int DEFAULT_CAPACITY = 50;
public static final long DEFAULT_CACHE_EXP = 12L;
public static final long DEFAULT_CACHE_ENTRY_EXP = 900L;
/** * 12小时后过期 */
private static Cache<String,
Cache> cacheManager = CacheBuilder.newBuilder()
.maximumSize(DEFAULT_CAPACITY)
.expireAfterAccess(12L, TimeUnit.HOURS)
.expireAfterWrite(12L, TimeUnit.HOURS)
.initialCapacity(10)
.build();
public static Cache getCache(String cacheName) {
return getCache(cacheName, DEFAULT_CAPACITY, DEFAULT_CACHE_ENTRY_EXP, TimeUnit.SECONDS);
}
public static Cache getCache(String cacheName, long expire, TimeUnit timeUnit) {
return getCache(cacheName, DEFAULT_CAPACITY, expire, timeUnit);
}
public static Cache getCache(String cacheName, int capacity, long expire, TimeUnit timeUnit) {
Cache cache = cacheManager.getIfPresent(cacheName);
if (null == cache) {
cache = CacheBuilder.newBuilder()
.maximumSize(DEFAULT_CAPACITY)
.expireAfterAccess(expire, timeUnit)
.expireAfterWrite(expire, timeUnit)
.initialCapacity(capacity)
.build();
cacheManager.put(cacheName, cache);
}
return cache;
}
public static Object get(String cacheName, String key) {
Cache cache = getCache(cacheName);
return cache.getIfPresent(key);
}
public static void put(String cacheName, String key, Object val) {
Cache cache = getCache(cacheName);
cache.put(key, val);
}
public static void put(String cacheName, String key, Object val, long expire, TimeUnit timeUnit) {
Cache cache = getCache(cacheName, expire, timeUnit);
cache.put(key, val);
}
}
三、 常见缓存数据淘汰算法( FIFO + LRU + LFU)
四、Guava Cache原理
1、GuavaCache核心原理之数据结构
Guava Cache的数据结构跟ConcurrentHashMap
类似,但也不完全一样。最基本的区别是ConcurrentMap
会一直保存所有添加的元素,直到显式地移除。
相对地,Guava Cache
为了限制内存占用,通常都设定为自动回收元素
。其数据结构图如下:
-
LocalCache
为Guava Cache的核心类,包含一个Segment数组
组成 -
Segement数组的长度决定了cache的
并发数
- 每一个Segment使用了单独的锁,其实每个Segment继承了ReentrantLock,对Segment的写操作需要先拿到锁
- 每个Segment由
一个table
和5个队列
组成
-
5个队列
- ReferenceQueue keyReferenceQueue : 已经被GC,需要内部清理的
键引用队列
- ReferenceQueue valueReferenceQueue : 已经被GC,需要内部清理的
值引用队列
- ConcurrentlinkedQueue<ReferenceEntry<k,v>> recencyQueue :
LRU队列
,当segment上达到临界值发生写操作时该队列会移除数据 - Queue<ReferenceEntry<K, V>> writeQueue:
写队列
,按照写入时间进行排序的元素队列,写入一个元素时会把它加入到队列尾部 - Queue<ReferenceEntry<K, V>> accessQueue:
访问队列
,按照访问时间进行排序的元素队列,访问(包括写入)一个元素时会把它加入到队列尾部
- ReferenceQueue keyReferenceQueue : 已经被GC,需要内部清理的
-
1个table
- AtomicReferenceArray<ReferenceEntry<K, V>> table:
AtomicReferenceArray
可以用原子方式更新
其元素的对象引用数组 - ReferenceEntry<K,V>, ReferenceEntry是Guava Cache中对一个键值对节点的抽象,每个ReferenceEntry数组项都是一条ReferenceEntry链。并且一个ReferenceEntry包含key、hash、valueReference、next字段(单链)
Guava Cache使用
ReferenceEntry
接口来封装一个键值对,而用ValueReference
来封装Value值 - AtomicReferenceArray<ReferenceEntry<K, V>> table:
2、GuavaCache核心原理之回收机制
Guava Cache提供了三种基本的缓存回收方式:
- 基于容量回收 maximumSize
- 在缓存项的数目达到限定值之前,采用
LRU + FIFO
的回收方式
- 在缓存项的数目达到限定值之前,采用
- 定时回收 expireAfter
- expireAfterAccess:缓存项在给定时间内没有被读/写访问,则回收。回收顺序和基于大小回收一样(LRU)
- expireAfterWrite:缓存项在给定时间内没有被写访问(创建或覆盖),则回收
- 基于引用回收
- 通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以垃圾回收
除了以上三种还有主动删除,采用命令: invalidateAll, invalidate
GuavaCache构建的缓存不会"自动"执行清理和回收工作,也不会在某个缓存项过期后马上清理,也没有诸如此类的清理机制。
GuavaCache是在每次进行缓存操作的时候,惰性删除
如get()或者put()的时候,判断缓存是否过期