Guava Cache : 本地缓存、Guava Cache介绍, API使用, 原理、CacheBuilder、常见的缓存淘汰策略


一. Guava Cache介绍

Guava Cache是在内存中缓存数据(JVM缓存/本地缓存),相比较于数据库或redis存储,访问内存中的数据会更加高效。Guava官网介绍,下面的这几种情况可以考虑使用Guava Cache:

  • 对性能有非常高的要求
  • 愿意消耗一些内存空间来提升速度
  • 预料到某些键会被多次查询 (热点数据)
  • 缓存中存放的数据总量不会超出内存容量

所以,可以将程序频繁用到的少量数据存储到Guava Cache中,以改善程序性能。下面对Guava Cache的用法进行详细的介绍。

1. Guava cache 优势 (重点)

  • 缓存过期和淘汰机制
    • GuavaCache中可以设置Key的过期时间,包括访问过期创建过期
    • GuavaCache在缓存容量(maximumSize)达到指定大小时,采用LRU+FIFO的方式,将不常使用的键值从Cache中删除
  • 并发处理能力
    • GuavaCache类似CurrentHashMap,是线程安全的。
    • 提供了设置并发级别的api (concurrencyLevel(5)),使得缓存支持并发的写入和读取

    采用分离锁机制,分离锁能够减小锁力度,提升并发能力; 分离锁是分拆锁定,把一个集合看分成若干partition, 每个partiton一把锁。ConcurrentHashMap就是分了16个区域,这16个区域之间是可以并发的。GuavaCache采用Segment做分区

  • 更新锁定
    • 在缓存中查询某个key,如果不存在,则查源数据,并回填缓存
    • GuavaCache可以在CacheLoaderload方法中加以控制,对同一个key,只让一个请求去读源数据并回填缓存,其他请求阻塞等待。
  • 集成数据源 (在缓存中读取不到时,可以去读数据源 并写入到缓存中)
    • 在业务中操作缓存,都会操作缓存和数据源两部分GuavaCache的get可以集成数据源,在从缓存中读取不到时可以从数据源中读取数据并回填缓存
  • 监控缓存加载/命中情况
    • 统计缓存信息, recordStats() , 开启统计信息开关, 查看通过cache对象stats方法

二、Guava Cache使用

1. 构建缓存对象 (CacheBuilder)

接口Cache代表一块缓存,它有如下方法:

public interface Cache<K, V> {
    V get(K key, Callable<? extends V> valueLoader) throws ExecutionException;

    ImmutableMap<K, V> getAllPresent(Iterable<?> keys);

    void put(K key, V value);

    void putAll(Map<? extends K, ? extends V> m);

    void invalidate(Object key);

    void invalidateAll(Iterable<?> keys);

    void invalidateAll();

    long size();

    CacheStats stats();

    ConcurrentMap<K, V> asMap();

    void cleanUp();
}

可以通过CacheBuilder类构建一个缓存对象,CacheBuilder类采用builder设计模式,它的每个方法都返回CacheBuilder本身,直到build方法被调用。构建一个缓存对象代码如下:

public class StudyGuavaCache {
    public static void main(String[] args) {
        Cache<String,String> cache = CacheBuilder.newBuilder().build();
        cache.put("word","Hello Guava Cache");
        System.out.println(cache.getIfPresent("word"));
    }
}

上面的代码通过CacheBuilder.newBuilder().build()这句代码创建了一个Cache缓存对象,并在缓存对象中存储了key为word,value为Hello Guava Cache的一条记录。

可以看到Cache非常类似于JDK中的Map,但是相比于Map,Guava Cache提供了很多更强大的功能。

2. 设置初始化容量和最大存储 (initialCapacity, maximumSize)

Guava Cache可以在 构建缓存对象时 指定缓存所能够存储的最大记录数量。

Cache中的记录数量达到最大值后再调用put方法向其中添加对象,Guava会先从当前缓存的对象记录中选择一条删除掉,腾出空间后再将新的对象存储到Cache中。

public class StudyGuavaCache {
    public static void main(String[] args) {
        Cache<String,String> cache = CacheBuilder.newBuilder()
        		//  指定用于缓存的hash table最低总规模; 可以不设置
		        .initialCapacity(int initialCapacity)
                .maximumSize(2)
                .build();
        cache.put("key1","value1");
        cache.put("key2","value2");
        cache.put("key3","value3");
        System.out.println("第一个值:" + cache.getIfPresent("key1"));
        System.out.println("第二个值:" + cache.getIfPresent("key2"));
        System.out.println("第三个值:" + cache.getIfPresent("key3"));
    }
}

上面代码在构造缓存对象时,通过CacheBuilder类的maximumSize方法指定Cache最多可以存储两个对象,然后调用Cache的put方法向其中添加了三个对象。

程序执行结果如下图所示,可以看到第三条对象记录的插入,导致了第一条对象记录被删除:

第一个值:null
第二个值:value2
第三个值:value3

3. 设置过期时间 (expireAfterAccess, expireAfterWrite)

在构建Cache对象时,可以通过CacheBuilder类的expireAfterAccessexpireAfterWrite两个方法为缓存中的对象指定过期时间,过期的对象将会被缓存自动删除。

  • expireAfterWrite 指定对象被写入到缓存后多久过期
  • expireAfterAccess 指定对象多久没有被访问后过期。
public class StudyGuavaCache {
    public static void main(String[] args) throws Exception {
        Cache<String, String> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .expireAfterWrite(3, TimeUnit.SECONDS)
                .build();
        cache.put("key1", "value1");
        int time = 1;
        while (true) {
            System.out.println("第" + time++ + "次取到key1的值为:" + cache.getIfPresent("key1"));
            Thread.sleep(1000);
        }
    }
}

上面的代码在构造Cache对象时,通过CacheBuilderexpireAfterWrite方法指定put到Cache中的对象在3秒后会过期。在Cache对象中存储一条对象记录后,每隔1秒读取一次这条记录。程序运行结果如下图所示,可以看到,前三秒可以从Cache中获取到对象,超过三秒后,对象从Cache中被自动删除。

第1次取到key1的值为:value1
第2次取到key1的值为:value1
第3次取到key1的值为:value1
第4次取到key1的值为:null
第5次取到key1的值为:null
第6次取到key1的值为:null
第7次取到key1的值为:null
第8次取到key1的值为:null
第9次取到key1的值为:null
第10次取到key1的值为:null
第11次取到key1的值为:null

下面代码是expireAfterAccess的例子:

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String, String> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .expireAfterAccess(3, TimeUnit.SECONDS)
                .build();
        cache.put("key1", "value1");
        int time = 1;
        while (true) {
            Thread.sleep(time * 1000L);
            System.out.println("睡眠" + time++ + "秒后取到key1的值为:" + cache.getIfPresent("key1"));
        }
    }
}

通过CacheBuilderexpireAfterAccess方法指定Cache中存储的对象如果超过3秒没有被访问就会过期。

while中的代码每sleep一段时间就会访问一次Cache中存储的对象key1,每次访问key1之后下次sleep的时间会加长一秒。程序运行结果如下图所示,从结果中可以看出,当超过3秒没有读取key1对象之后,该对象会自动被Cache删除。

睡眠1秒后取到key1的值为:value1
睡眠2秒后取到key1的值为:value1
睡眠3秒后取到key1的值为:null
睡眠4秒后取到key1的值为:null
睡眠5秒后取到key1的值为:null
睡眠6秒后取到key1的值为:null
睡眠7秒后取到key1的值为:null
睡眠8秒后取到key1的值为:null
睡眠9秒后取到key1的值为:null

4. 弱软引用 (weakKeys, weakValues, softValues)

  • weakKeys
    将缓存中的key设置成weakKey模式。默认情况下,会使用“强关系”来保存key值。当设置为weakKey时,会使用(==)来匹配key值。在使用weakKey的情况下,数据可能会被GC。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。

  • weakValues
    将缓存中的数据设置为weakValues模式。启用weakValue设置时,某些数据会被GC。默认情况下,会使用“强关系”来保存key值。当设置为weakValue时,会使用(==)来匹配value值。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。

  • softValues
    将缓存中的数据设置为softValues模式。使用这个模式时,所有的数据都使用SoftReference类对缓存中的数据进行包裹(就是在SoftReference实例中存储真实的数据)。使用SoftReference包裹的数据,会被全局垃圾回收管理器托管,按照LRU的原则来定期GC数据。数据被GC后,可能仍然会被size方法计数,但是对其执行read或write方法已经无效。

// 当key和缓存元素都不再存在其他强引用的时候驱逐
LoadingCache<Key, Graph> graphs = Caffeine.newBuilder()
    .weakKeys()
    .weakValues()
    .build(key -> createExpensiveGraph(key));

// 当进行GC的时候进行驱逐
LoadingCache<Key, Graph> graphs = Caffeine.newBuilder()
    .softValues()
    .build(key -> createExpensiveGraph(key));

可以通过weakKeysweakValues方法指定Cache只保存对缓存记录key和value的弱引用

这样当没有其他强引用指向key和value时,key和value对象就会被垃圾回收器回收。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String, Object> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .weakValues()
                .build();
        Object value = new Object();
        cache.put("key1", value);

        value = new Object(); //原对象不再有强引用
        System.gc();
        System.out.println(cache.getIfPresent("key1"));
    }
}
null

上面代码的打印结果是null。构建Cache时通过weakValues方法指定Cache只保存记录值的一个弱引用。当给value引用赋值一个新的对象之后,就不再有任何一个强引用指向原对象。System.gc()触发垃圾回收后,原对象就被清除了。

5. 主动清除缓存 (invalidateAll, invalidate)

可以调用CacheinvalidateAllinvalidate方法显示删除Cache中的记录。

  • invalidate方法一次只能删除Cache中一个记录,接收的参数是要删除记录的key。
  • invalidateAll方法可以批量删除Cache中的记录,当没有传任何参数时,invalidateAll方法将清除Cache中的全部记录。invalidateAll也可以接收一个Iterable类型的参数,参数中包含要删除记录的所有key值。

下面代码对此做了示例:

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String, String> cache = CacheBuilder.newBuilder().build();
        cache.put("key1", "value1");
        cache.put("key2", "value2");
        cache.put("key3", "value3");

        // cache.invalidate("key1"); // 清楚key1这个缓存

        List<String> list = Lists.newArrayList("key1", "key2");
        cache.invalidateAll(list); //批量清除list中全部key对应的记录
        System.out.println(cache.getIfPresent("key1"));
        System.out.println(cache.getIfPresent("key2"));
        System.out.println(cache.getIfPresent("key3"));
    }
}

代码中构造了一个集合list用于保存要删除记录的key值,然后调用invalidateAll方法批量删除key1和key2对应的记录,只剩下key3对应的记录没有被删除

null
null
value3

6. 移除监听器 (RemovalListener)

可以为Cache对象添加一个移除监听器,这样当有记录(缓存)被删除时可以感知到这个事件。

public class StudyGuavaCache {
    public static void main(String[] args) {

        RemovalListener<String, String> listener = new RemovalListener<String, String>() {
            public void onRemoval(RemovalNotification<String, String> notification) {
                System.out.println("[" + notification.getKey() + ":" + notification.getValue() + "] is removed!");
            }
        };

        Cache<String, String> cache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .removalListener(listener)
                .build();
        // 因为maximumSize为3, 所以cache只能存三个缓存,后面的会覆盖前面的缓存
        cache.put("key1", "value1");
        cache.put("key2", "value2");
        cache.put("key3", "value3");
        cache.put("key4", "value3");
        cache.put("key5", "value3");
        cache.put("key6", "value3");
        cache.put("key7", "value3");
        cache.put("key8", "value3");
    }
}

removalListener方法为Cache指定了一个移除监听器,这样当有记录从Cache中被删除时,监听器listener就会感知到这个事件。程序运行结果如下图所示:

[key1:value1] is removed!
[key2:value2] is removed!
[key3:value3] is removed!
[key4:value3] is removed!
[key5:value3] is removed!

7. 自动加载 (重点)

Cache的get方法有两个参数,第一个参数是要从Cache中获取缓存的key,第二个参数是一个Callable对象。

  • 当缓存中已经存在key对应的记录时,get方法直接返回key对应的记录。
  • 如果缓存中不包含key对应的记录,Guava会启动一个线程执行Callable对象中的call方法,call方法的返回值会作为key对应的值被存储到缓存中,并且被get方法返回。

下面是一个多线程的例子:

public class StudyGuavaCache {

    private static final Cache<String, String> cache = CacheBuilder.newBuilder()
            .maximumSize(3)
            .build();

    public static void main(String[] args) {

        new Thread(() -> {
            System.out.println("thread1");
            try {
                String value = cache.get("key", new Callable<String>() {
                    public String call() throws Exception {
                        System.out.println("load1"); //加载数据线程执行标志
                        Thread.sleep(1000); //模拟加载时间
                        return "auto load1 by Callable";
                    }
                });
                System.out.println("thread1 " + value);
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            System.out.println("thread2");
            try {
                String value = cache.get("key", new Callable<String>() {
                    public String call() throws Exception {
                        System.out.println("load2"); //加载数据线程执行标志
                        Thread.sleep(1000); //模拟加载时间
                        return "auto load2 by Callable";
                    }
                });
                System.out.println("thread2 " + value);
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

这段代码中有两个线程共享同一个Cache对象,两个线程同时调用get方法获取同一个key对应的记录。

由于key对应的记录不存在,所以两个线程都在get方法处阻塞。此处在call方法中调用Thread.sleep(1000)模拟程序从外存加载数据的时间消耗。

代码的执行结果如下图:

thread1
thread2
load1
thread1 auto load1 by Callable
thread2 auto load1 by Callable

从结果中可以看出,虽然是两个线程同时调用get方法,但只有一个get方法中的Callable会被执行(没有打印出load2)。

Guava可以保证当有多个线程同时访问Cache中的一个key时,如果key对应的记录不存在,Guava只会启动一个线程执行get方法中Callable参数对应的任务加载数据存到缓存。当加载完数据后,任何线程中的get方法都会获取到key对应的值。

8. 统计信息 (recordStats)

可以对Cache命中率加载数据时间等信息进行统计。在构建Cache对象时,可以通过CacheBuilderrecordStats方法开启统计信息的开关。开关开启后Cache会自动对缓存的各种操作进行统计,调用Cache的stats方法可以查看统计后的信息

public class StudyGuavaCache {
    public static void main(String[] args) {
        Cache<String, String> cache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .recordStats() //开启统计信息开关
                .build();

        cache.put("key1", "value1");
        cache.put("key2", "value2");
        cache.put("key3", "value3");
        cache.put("key4", "value4");

        cache.getIfPresent("key1");
        cache.getIfPresent("key2");
        cache.getIfPresent("key3");
        cache.getIfPresent("key4");
        cache.getIfPresent("key5");
        cache.getIfPresent("key6");

        System.out.println(cache.stats()); //获取统计信息
    }
}

这些统计信息对于调整缓存设置是至关重要的,在性能要求高的应用中应该密切关注这些数据。

CacheStats{hitCount=3, missCount=3, loadSuccessCount=0, loadExceptionCount=0, totalLoadTime=0, evictionCount=1}

9. LoadingCache (重点)

LoadingCacheCache的子接口,相比较于Cache,当从LoadingCache中读取一个指定key的记录时,如果该记录不存在,则LoadingCache可以自动执行加载数据到缓存的操作。LoadingCache接口的定义如下:

public interface LoadingCache<K, V> extends Cache<K, V>, Function<K, V> {

    V get(K key) throws ExecutionException;

    V getUnchecked(K key);

    ImmutableMap<K, V> getAll(Iterable<? extends K> keys) throws ExecutionException;

    V apply(K key);

    void refresh(K key);

    @Override
    ConcurrentMap<K, V> asMap();
}

与构建Cache类型的对象类似,LoadingCache类型的对象也是通过CacheBuilder进行构建,不同的是,在调用CacheBuilderbuild方法时,必须传递一个CacheLoader类型的参数,CacheLoader的load方法需要我们提供实现。

当调用LoadingCacheget方法时,如果缓存不存在对应key的记录,则CacheLoader中的load方法会被自动调用从外存加载数据,load方法的返回值会作为key对应的value存储到LoadingCache中,并从get方法返回。

public class StudyGuavaCache {
    public static void main(String[] args) throws ExecutionException {

        CacheLoader<String, String> loader = new CacheLoader<>() {
            public String load(String key) throws Exception {
                Thread.sleep(1000); //休眠1s,模拟加载数据
                System.out.println(key + " is loaded from a cacheLoader!");
                return key + "'s value";
            }
        };

        LoadingCache<String, String> loadingCache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .build(loader);//在构建时指定自动加载器
                
		// 如果获取key1的数据为空,则会自动调用上面load方法,并将数据缓存到key1中
        loadingCache.get("key1");
        loadingCache.get("key2");
        loadingCache.get("key3");
    }
}
key1 is loaded from a cacheLoader!
key2 is loaded from a cacheLoader!
key3 is loaded from a cacheLoader!

10. 并发度 (concurrencyLevel)

Guava Cache可以通过参数concurrencyLevel(5)设置并发度,即可以同时写缓存的线程数。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .concurrencyLevel(5)
                .build();
        cache.put("key1","value1");
        cache.getIfPresent("key1");
    }
}

11. 数据清除权重 (maximumWeight, weigher)

数据清除权重。在缓存的使用中,这个权重的概率很难理解,简单的说就是:每个参数在进入缓存之前都会使用用户自定义的Weigher对象来运算每条数据的权重值。
在进行数据释放时,会参考数据的权重值和设定的“maximumWeight”来确定哪条数据需要被回收。声明代码如下:

public class StudyGuavaCache {
    public static void main(String[] args) throws ExecutionException {
        LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
                .maximumWeight(100000)
                .weigher(new Weigher<Key, Graph>() {
                    public int weigh(Key k, Graph g) {
                        return g.vertices().size();
                    }
                })
                .build(
	                  new CacheLoader<Key, Graph>() {
	                         public Graph load(Key key) { // no checked exception
	                             return createExpensiveGraph(key);
	                         }
	                     });
    }
}

Guava Cache封装工具类

import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;

import java.util.concurrent.TimeUnit;

public final class JvmCacheUtil {

    public static final String JVM_CACHE_SPECIFY_GEO = "cache_specify_geo";

    public static final String JVM_CACHE_BUILD_SQL = "cache_build_sql";

    public static final int DEFAULT_CAPACITY = 50;

    public static final long DEFAULT_CACHE_EXP = 12L;

    public static final long DEFAULT_CACHE_ENTRY_EXP = 900L;
        /**    * 12小时后过期    */
    private static Cache<String,
        Cache> cacheManager = CacheBuilder.newBuilder()
            .maximumSize(DEFAULT_CAPACITY)
            .expireAfterAccess(12L, TimeUnit.HOURS)
            .expireAfterWrite(12L, TimeUnit.HOURS)
            .initialCapacity(10)
            .build();

    public static Cache getCache(String cacheName) {
        return getCache(cacheName, DEFAULT_CAPACITY, DEFAULT_CACHE_ENTRY_EXP, TimeUnit.SECONDS);
    }

    public static Cache getCache(String cacheName, long expire, TimeUnit timeUnit) {
        return getCache(cacheName, DEFAULT_CAPACITY, expire, timeUnit);
    }

    public static Cache getCache(String cacheName, int capacity, long expire, TimeUnit timeUnit) {
        Cache cache = cacheManager.getIfPresent(cacheName);
        if (null == cache) {
            cache = CacheBuilder.newBuilder()
                .maximumSize(DEFAULT_CAPACITY)
                .expireAfterAccess(expire, timeUnit)
                .expireAfterWrite(expire, timeUnit)
                .initialCapacity(capacity)
                .build();
            cacheManager.put(cacheName, cache);
        }
        return cache;
    }

    public static Object get(String cacheName, String key) {
        Cache cache = getCache(cacheName);
        return cache.getIfPresent(key);
    }

    public static void put(String cacheName, String key, Object val) {
        Cache cache = getCache(cacheName);
        cache.put(key, val);
    }

    public static void put(String cacheName, String key, Object val, long expire, TimeUnit timeUnit) {
        Cache cache = getCache(cacheName, expire, timeUnit);
        cache.put(key, val);
    }
}

三、 常见缓存数据淘汰算法( FIFO + LRU + LFU)

在这里插入图片描述

四、Guava Cache原理

1、GuavaCache核心原理之数据结构

Guava Cache的数据结构跟ConcurrentHashMap类似,但也不完全一样。最基本的区别是ConcurrentMap会一直保存所有添加的元素,直到显式地移除。

相对地,Guava Cache为了限制内存占用,通常都设定为自动回收元素。其数据结构图如下:
在这里插入图片描述

  • LocalCache为Guava Cache的核心类,包含一个Segment数组组成

  • Segement数组的长度决定了cache的并发数

    • 每一个Segment使用了单独的锁,其实每个Segment继承了ReentrantLock,对Segment的写操作需要先拿到锁
    • 每个Segment由一个table5个队列组成
  • 5个队列

    • ReferenceQueue keyReferenceQueue : 已经被GC,需要内部清理的 键引用队列
    • ReferenceQueue valueReferenceQueue : 已经被GC,需要内部清理的 值引用队列
    • ConcurrentlinkedQueue<ReferenceEntry<k,v>> recencyQueue : LRU队列,当segment上达到临界值发生写操作时该队列会移除数据
    • Queue<ReferenceEntry<K, V>> writeQueue:写队列,按照写入时间进行排序的元素队列,写入一个元素时会把它加入到队列尾部
    • Queue<ReferenceEntry<K, V>> accessQueue:访问队列,按照访问时间进行排序的元素队列,访问(包括写入)一个元素时会把它加入到队列尾部
  • 1个table

    • AtomicReferenceArray<ReferenceEntry<K, V>> table:AtomicReferenceArray可以用原子方式更新其元素的对象引用数组
    • ReferenceEntry<K,V>, ReferenceEntry是Guava Cache中对一个键值对节点的抽象,每个ReferenceEntry数组项都是一条ReferenceEntry链。并且一个ReferenceEntry包含key、hash、valueReference、next字段(单链)

    Guava Cache使用ReferenceEntry接口来封装一个键值对,而用ValueReference来封装Value值

2、GuavaCache核心原理之回收机制

Guava Cache提供了三种基本的缓存回收方式:

  • 基于容量回收 maximumSize
    • 在缓存项的数目达到限定值之前,采用LRU + FIFO的回收方式
  • 定时回收 expireAfter
    • expireAfterAccess:缓存项在给定时间内没有被读/写访问,则回收。回收顺序和基于大小回收一样(LRU)
    • expireAfterWrite:缓存项在给定时间内没有被写访问(创建或覆盖),则回收
  • 基于引用回收
    • 通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以垃圾回收

除了以上三种还有主动删除,采用命令: invalidateAll, invalidate

GuavaCache构建的缓存不会"自动"执行清理和回收工作,也不会在某个缓存项过期后马上清理,也没有诸如此类的清理机制。

GuavaCache是在每次进行缓存操作的时候,惰性删除 如get()或者put()的时候,判断缓存是否过期

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

white camel

感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值