Uniontake

一直在路上,充满动力,充满感恩,追逐梦想。

[二分]51Nod-1105 第K大数

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
数组A和数组B,里面都有n个整数。数组C共有n^2个整数,分别是A[0] * B[0],A[0] * B[1] ......A[1] * B[0],A[1] * B[1]......A[n - 1] * B[n - 1](数组A同数组B的组合)。求数组C中第K大的数。
例如:A:1 2 3,B:2 3 4。A与B组合成的C包括2 3 4 4 6 8 6 9 12共9个数。
Input
第1行:2个数N和K,中间用空格分隔。N为数组的长度,K对应第K大的数。(2 <= N <= 50000,1 <= K <= 10^9)
第2 - N + 1行:每行2个数,分别是A[i]和B[i]。(1 <= A[i],B[i] <= 10^9)
Output
输出第K大的数。
Input示例
3 2
1 2
2 3
3 4
Output示例
9


题意:不复述了

题解:参考博客 基于第K大数的思考

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 5e4+10;
ll n,k,m;
ll arr[maxn],brr[maxn];
bool check(ll mid) {
    ll cnt = 0,it,temp;
    for(int i=0;i<n;i++) {
        it = mid / arr[i];
        temp = upper_bound(brr,brr+n,it) - brr;
        cnt += temp;
    }
    return cnt <= m; /// 这里的m=n*n-k,而第k大为n*n-k+1 
}
int main()
{
    while(~scanf("%lld%lld",&n,&k))
    {
        m = n*n - k;
        for(int i=0;i<n;i++) scanf("%lld%lld",&arr[i],&brr[i]);
        sort(arr,arr+n);sort(brr,brr+n);
        ll left = 0,right = 1e18+10,ans;
        while(left <= right) {
            ll mid = (left +right) >> 1;
            if(check(mid)) left = mid + 1;
            else right = mid - 1;
        }
        printf("%lld\n",right);
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/m0_38013346/article/details/79976805
个人分类: 二分
上一篇[二分]基于第K大数的思考 (poj3579)
下一篇[二分-最小化最大值]luoguP1083-借教室
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭