拉普拉斯咚
码龄8年
关注
提问 私信
  • 博客:5,679
    5,679
    总访问量
  • 9
    原创
  • 1,381,643
    排名
  • 2
    粉丝
  • 0
    铁粉

个人简介:电信贴膜小能手、五山禅院资深禅师

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-03-22
博客简介:

m0_38018513的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得8次评论
  • 获得5次收藏
创作历程
  • 8篇
    2019年
  • 1篇
    2017年
成就勋章
TA的专栏
  • 文本检测
    7篇
  • 目标检测
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 人工智能
    opencvtensorflowpytorchnlp迁移学习分类回归
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【论文阅读】Arbitrary Shape Scene Text Detection with Adaptive Text Region Representation

思想本论文与Unet方法不同,用Mask R-CNN类的方法来实现任意形状文本的检测,其中,它借用FPN网络的对矩形框的优异的检测性能,很好的找出文本的区域的矩形框,而后,通过一个基于LSTM的refine proposal模块来细致的描绘文本区,这巧妙的通过roi-pooling layer得到的特征进行任意形状框的回归(将feature作为LSTM每个step的输入,然后回归出任意长度点的序...
原创
发布博客 2019.11.06 ·
489 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SegLink ++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping

角度该论文针对的是文本检测任务中类似于商品信息等图片具有密集且任意形状的文本框的问题。首先作者分析了现有的两个文本检测的大方向,第一个是自上而下的检测方法,这一类方法大多直接回归一个文本框或四边形来标注文本区域。这一类方法的好处是对于多方向的文本检测比较好,但是它很难处理好训练数据在长宽比上的不均匀的问题,导致了对横宽比比较奇异的文本检测能力差,同时,因为回归一整个框的缘故,对于奇异形状文本的检...
原创
发布博客 2019.11.03 ·
1232 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

MSR: Multi-Scale Shape Regression for Scene Text Detection

原文连接:MSR: Multi-Scale Shape Regression for Scene Text Detection角度针对现有的回归方形文本框的方式,作者提出了一种回归密集的边框点的形式,在可以生成匹配任意文本的同时,通过高级任务来增加网络提取特征的能力(个人认为)。考虑到多尺度的问题,作者提出了一种适合于多尺度的网络结构。算法流程图片被处理为图片金字塔后一起输入网络,得到三...
原创
发布博客 2019.10.20 ·
807 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】Finding Tiny Faces

论文链接 :Finding Tiny Faces一、角度小目标一直是人脸检测的难点,在使用Faster R-CNN这一类方法作检测的情况下,目标检测和感受野是相关的,在本文中,作者将这个理解为context,并展开了讨论。同时,又因为深度网络自身的特性,作者又考虑了scale invariance,再因为数据集的分布问题,还补充了对contextual reasoning的讨论。最后,作者提出...
原创
发布博客 2019.10.15 ·
439 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【论文阅读】An Analysis of Scale Invariance in Object Detection – SNIP

An Analysis of Scale Invariance in Object Detection – SNIP一、角度基于CNN的检测器是对尺寸敏感的,所以要做到通过训练的多样化和专一化为为模型性能服务是很困难的一件事。多样化指的是对于整个检测器而言,输入一定要较均衡的覆盖每个scale,专一指的是检测器的对应不同scale的部分应该得到充足且正确的训练。前者要求提供的样本够丰富,后者要...
原创
发布博客 2019.10.10 ·
208 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

思想:通过一系列同一中轴线的,有序的,重叠的圆盘来表示曲折的文本,其中,每个圆盘有可能变化的半径和方向结构:S(t)={D0,D1,……,Di,……,Dn},其中,Di表示第i个圆盘,参数为D=(c,r,Θ)。其中,c为中心点坐标,r为圆盘的半径(主要体现在text的宽上),Θ为中心线与水平线的夹角优点:检测是通过一系列圆盘参数的预测及一条分割出来的中心线组成的,这种结构不但可以很好的...
原创
发布博客 2019.09.29 ·
369 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[论文阅读] Geometry Normalization Networks for Accurate Scene Text Detection

原文链接: Geometry Normalization Networks for Accurate Scene Text Detection思想:这篇论文的角度是CNN模型对于文本检测的框的geometry variance的覆盖范围是有限的(用有限的variance来训练得到的检测器结果最好),首先验证,后提出通过新增几个不同的branch(Scale Normalization Un...
原创
发布博客 2019.09.29 ·
920 阅读 ·
0 点赞 ·
5 评论 ·
1 收藏

[论文阅读]Character Region Awareness for Text Detection

Character Region Awareness for Text Detectionhttps://arxiv.org/abs/1904.01941思想:作者提出了一个character-level的文本检测方法,通过对character和affinity between characters的分割,实现对arbitrary shape的word的检测与完美描绘。重点:1.通过ch...
原创
发布博客 2019.09.28 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【论文阅读】Superpixel-based Tracking-by-Segmentation using Markov Chains

Superpixel-based Tracking-by-Segmentation using Markov Chains 论文阅读
原创
发布博客 2017.11.14 ·
873 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏