让机器更好的服务于人
在20世纪50年代,信息学之父香农就提出了使用数学的方法处理自然语言问题。问答系统可以被看作一个函数:回复=函数体(问题)。
在函数体内部,有很多中回复候选集,然后通过算法进行排名,选择最优的输出。
人们在这个思路上经过了几十年的探索,尤其是朴树贝叶斯、HMM、维特比算法、图论以及神经网络的应用,不断提升了智能的程度。
问答系统与传统信息检索系统
| 比较方面 | 问答系统 | 传统信息检索系统 |
|---|---|---|
| 系统输入 | 自然语言 | 关键词组合 |
| 系统输出 | 自然语言答案 | 文档列表 |
| 上下文环境 | 需要考虑用户对话的上下文 | 不需要考虑上下文 |
| 任务驱动 | 在不能理解用户意图的情况下,会请求用户补充信息 | 尽可能理解当前查询,不要求用户补充信息 |
从20世纪50年代至今,智能问答系统经历了从数学处理自然语言到应用复杂算法的演变。通过贝叶斯、HMM、维特比算法、图论及神经网络,提升了机器理解和服务人类的能力。相较于传统信息检索,问答系统更注重上下文理解和对话互动。
2679

被折叠的 条评论
为什么被折叠?



