【BZOJ1901/Zju2112】Dynamic Rankings

                                          Dynamic Rankings

Description

给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。 第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。

Input

对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。

Sample Input

5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6

HINT

20%的数据中,m,n≤100; 40%的数据中,m,n≤1000; 100%的数据中,m,n≤10000。

 

解析:

       主席树+树状数组。

       此题为动态区间第K小,与之前的静态区间第K小思路类似,但是做这道题有一个问题,它是有修改的,如果直接暴力修改这个点以后的所有线段树肯定不现实,于是我们由前缀和联想到树状数组,每次只修改i+lowbit(i)位置的线段树,这样就可以把复杂度降到log级别,然后就能过了。

       PS:垃圾洛谷的评测机数据,我的代码用BZOJ的数据就是AC,但在洛谷0分。。。

 

代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;

const int Max=20010;
const int MAX=2200001;
int n,m,tot,mx,size,top1,top2;
int num[Max],a[Max],root[Max],s[Max],t[Max];
struct shu{int l,r,sum,num;};
shu tree[MAX];
struct q{int x,y,z;bool flag;};
q in[Max];

inline int get_int()
{
    int x=0,f=1;
    char c;
    for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
    if(c=='-') {f=-1;c=getchar();}
    for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
    return x*f;
}

inline void pre()
{
    sort(a+1,a+tot+1);
    mx=unique(a+1,a+tot+1)-a-1;
    for(int i=1;i<=n;i++) num[i] = lower_bound(a+1,a+mx+1,num[i])-a;
    for(int i=1;i<=m;i++) if(!in[i].flag) in[i].y = lower_bound(a+1,a+mx+1,in[i].y)-a;
}

inline int lowbit(int x){return x&-x;}

inline void build(int &rt,int fa,int l,int r,int num,int sum)
{
    tree[rt=++size]=tree[fa];
    tree[rt].sum+=sum;
    if(l==r)return;
    int mid = (l + r) >> 1;
    if(num <= mid) build(tree[rt].l,tree[fa].l,l,mid,num,sum);
    else build(tree[rt].r,tree[fa].r,mid+1,r,num,sum);
}

inline int Q(int l,int r,int k)
{
    if(l==r) return l;
    int suml=0,sumr=0;
    for(int i=1;i<=top1;i++) sumr+=tree[tree[t[i]].l].sum;
    for(int i=1;i<=top2;i++) suml+=tree[tree[s[i]].l].sum;
    int mid = (l + r) >> 1;
    if(sumr-suml >= k)
    {
      for(int i=1;i<=top1;i++) t[i]=tree[t[i]].l;
      for(int i=1;i<=top2;i++) s[i]=tree[s[i]].l;
      return Q(l,mid,k);
    }
    else
    {
      for(int i=1;i<=top1;i++) t[i]=tree[t[i]].r;
      for(int i=1;i<=top2;i++) s[i]=tree[s[i]].r;
      return Q(mid+1,r,k-(sumr-suml));
    }
}

signed main()
{
    n=get_int(),m=get_int();
    for(int i=1;i<=n;i++) num[i]=a[++tot]=get_int();
    for(int i=1;i<=m;i++)
    {
      char ch=getchar();
      if(ch=='Q') in[i].x=get_int(),in[i].y=get_int(),in[i].z=get_int(),in[i].flag=1;
      else in[i].x=get_int(),in[i].y=a[++tot]=get_int();
    }

    pre();
    for(int i=1;i<=n;i++)
      for(int j=i;j<=n;j+=lowbit(j))
        build(root[j],root[j],0,mx,num[i],1);

    for(int i=1;i<=m;i++)
    {
      if(!in[i].flag)
      {
      	for(int j=in[i].x;j<=n;j+=lowbit(j))
      	  build(root[j],root[j],0,mx,num[in[i].x],-1),build(root[j],root[j],0,mx,in[i].y,1);
      	num[in[i].x]=in[i].y;
      }
      else
      {
      	top1=top2=0;
      	for(int j=in[i].y;j;j-=lowbit(j)) t[++top1]=root[j];
      	for(int j=in[i].x-1;j;j-=lowbit(j)) s[++top2]=root[j];
      	cout<<a[Q(0,mx,in[i].z)]<<"\n";
      }
    }

    return 0;
}

 

发布了369 篇原创文章 · 获赞 66 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览