精读论文:Multi-task, multi-domain learning: Application to semantic segmentation(附翻译)

本文研究了多任务多领域学习,特别是在语义分割和姿态估计中的应用。针对多任务训练的挑战,如独立训练的参数过多、忽视标签间关系,提出选择性损失函数,实现联合特征训练。此外,通过建模标签集间的相关性和应用领域自适应技术,提升模型性能。实验结果表明,这种方法在不同场景下都能提高预测准确性。
摘要由CSDN通过智能技术生成

Multi-task, multi-domain learning: Application to semantic segmentation and pose regression

写于2020年8月1日,算是看过的第一篇较为完整的multi-task,multi-domain的文章,也是第一篇纯自己看,网络没有总结的文章。师兄说是SCI二区文章比较简单,但我还是懵懵的。

一、总结

1. multi-task,multi-domain

data,label:
输入: x i k x_i^k xik patch(一个像素和它周围的像素组成patch)
标签: y i k y_i^k yik
D k = { x i k , y i k } D_k=\{x_i^k,y_i^k\} Dk={ xik,yik},其中 k = 1... K k=1...K k=1...K i i i是patch的索引
标签空间在数据集上是不同的,因此每个 y i k y_i^k yik都可以在空间 L k L^k Lk中取值。
multi-task:
  与多标签分类不同,我们必须从每个标签集 L k L^k Lk中预测一个且恰好一个标签,而不是预测每个标签的存在或不存在。合并数据集还会产生域适应问题:所有数据集可能属于同一类型(例如RGB图像),但是输入分布在各个数据集之间差异很大。

2. 各个任务独立训练的限制

在K个数据集上训练K个模型:
在这里插入图片描述

  • (i)参数多,每个模型都要不断优化参数,参数 θ k = { W l , b l } l = 1 L \theta_k=\{W^l,b^l\}_{l=1}^L θk={ Wl,bl}l=1L包括所有卷积的滤波器以及所有全连接层的权重和偏差,导致参数很多。从有限(且通常很少)的训练数据中学习如此大量的参数非常具有挑战性。
  • (ii)标签空间之间的关系没有考虑

3. joint feature training with selective loss

针对问题1设置带有选择损失的联合特征训练:
  联合特征训练:用联合数据集来训练一个网络,让网络决定在每一层到哪些特征是通用的,哪些特征属于特定任务的。从不同数据集中采样训练,使得提取的特征对于每一个子数据集都有用。
  选择损失函数:定义了数据集级别的softmax(每个数据集生成一个概率向量),对于数据集k中的每个标签j,
f ( j , θ ( x , Θ ) ) = e θ ( x , Θ ) j ∑ j ′ ∈ L k e θ ( x , Θ ) j ′ f(j,\theta(x,\Theta))=\frac{e^{\theta(x,\Theta)_j}}{\sum_{j^{'}\in L^k}e^{\theta(x,\Theta)_{j'}}} f(j,θ(x,Θ))=jLkeθ(x,Θ)jeθ(x,Θ)j
  在实践中,在学习过程中,将基于数据集的soft-max与交叉熵损失函数相结合,以构建所谓的选择性交叉熵损失函数:
J ′ ( k , x , y , Θ ) = − θ ( x , Θ ) y + l o g ( ∑ j ∈ L k e θ ( x , Θ ) j ) J'(k,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值