学习笔记(16):Python+OpenCV计算机视觉-图像平滑-均值滤波

本文介绍均值滤波(线性滤波)的基本原理及其在图像处理中的应用,通过使用Python的OpenCV库,演示了如何实现3*3卷积核的低通滤波效果,达到去噪和平滑图像的目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

立即学习:https://edu.csdn.net/course/play/10552/234931?utm_source=blogtoedu

均值滤波(线性滤波)

低通滤波是平滑(去噪,模糊),高通滤波是锐化

针对原始图像内的像素点,逐个采用核进行处理,得到结果图像。

例 3*3 卷积核

kernal = \frac{1}{9}\begin{bmatrix} 1 & 1 &1 \\ 1 & 1& 1\\ 1 & 1& 1 \end{bmatrix}

函数 blur 

处理结果 = cv2.blur(src,核大小)

核大小:以(宽度,高度)表示的元组

import cv2
import numpy as np
a = cv2.imread('111.jpg',cv2.IMREAD_UNCHANGED)
b = cv2.blur(a,(10,10))
cv2.imshow('a',a)
cv2.imshow('b',b)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值