立即学习:https://edu.csdn.net/course/play/10552/234940?utm_source=blogtoedu
礼帽图像
礼帽图像 = 原始图像 - 开运算图像
结果为原始噪声
函数morphologyEx
dst = cv2.morphologyEx(src , cv2.MORPH_TOPHAT , kernel)
import cv2
import numpy as np
img = cv2.imread('111.jpg',cv2.IMREAD_UNCHANGED)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
k = np.ones((5,5),np.uint8)
r,tw = cv2.threshold(gray, 120 , 255 , cv2.THRESH_BINARY)
dst = cv2.morphologyEx(tw, cv2.MORPH_TOPHAT, k)
cv2.namedWindow('gray',cv2.WINDOW_AUTOSIZE)
cv2.namedWindow('tw',cv2.WINDOW_AUTOSIZE)
cv2.namedWindow('dst',cv2.WINDOW_AUTOSIZE)
cv2.imshow('gray',gray)
cv2.imshow('tw',tw)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
本文详细介绍了使用OpenCV进行礼帽图像处理的方法,通过原始图像与开运算图像的差值来提取图像中的噪声部分。代码示例展示了如何读取图像、转换为灰度、应用阈值处理以及执行形态学操作。

被折叠的 条评论
为什么被折叠?



