立即学习:https://edu.csdn.net/course/play/10552/234946?utm_source=blogtoedu
laplacian算子
拉普拉斯算子类似于二阶sobel导数
dst = cv2.Laplacian(src,ddepth)
通常情况下,可以将参数的值设置为-1,让结果与原图像一致
但可能存在负值截断,处理方法同sobel
import cv2
import numpy as np
img = cv2.imread('111.jpg',cv2.IMREAD_UNCHANGED)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
k = np.ones((5,5),np.uint8)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
dst = cv2.convertScaleAbs(laplacian) # 取绝对值
cv2.namedWindow('dstx',cv2.WINDOW_AUTOSIZE)
cv2.namedWindow('dsty',cv2.WINDOW_AUTOSIZE)
cv2.namedWindow('dst',cv2.WINDOW_AUTOSIZE)
cv2.imshow('gray',gray)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
本文介绍如何使用拉普拉斯算子进行图像处理,该算子类似于二阶Sobel导数,通过cv2.Laplacian函数应用到灰度图像上,获取图像的边缘信息。文中展示了使用Python和OpenCV库进行图像边缘检测的具体代码实现。
3901

被折叠的 条评论
为什么被折叠?



