自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

深度探寻者

深度学习大白,愿与大家一起学习。

原创 永兴的tensorflow笔记-16 可视化工具tensorboard 1 简单介绍

一、TensorBoard: TensorBoard 是 TensorFlow提供的一组可视化工具(a suite of visualization tools),可以帮助开发者方便的理解、调试、优化TensorFlow 程序 。 TensorBoard 可以有效 地展示 TensorFlow ...

2020-01-29 21:43:19

阅读数 85

评论数 0

原创 永兴的tensorflow笔记-15 卷积神经网络实践

一、什么是卷积神经网络? 卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重...

2020-01-27 20:12:43

阅读数 202

评论数 21

原创 永兴的tensorflow笔记-14 池化层以及Dropout层

一、什么是池化层? 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发...

2020-01-25 19:14:32

阅读数 114

评论数 0

原创 永兴的tensorflow笔记-13 卷积操作

一、什么是卷积?(Convolutional) 卷积是一种有效提取图片特征的方法。一般用一个正方形卷积核,遍历图片 上的每一个像素点。图片与卷积核重合区域内相对应的每一个像素值乘卷积核 内相对应点的权重,然后求和,再加上偏置后(可不加),最后得到输出图片中的一个像素值。 在原始的输入上进行特征的...

2020-01-22 11:43:49

阅读数 197

评论数 0

原创 永兴的tensorflow笔记-12 滑动平均(影子值)

点击图片进行查看 一、什么是滑动平均? 滑动平均法(moving average)又称移动平均法。在简单平均数法基础上,通过顺序逐期增减新旧数据求算移动平均值,借以消除偶然变动因素,找出事物发展趋势,并据此进行预测的方法。 简单来说就是 参数变化 时 滑动平均(影子值),跟随参数的变化 进行缓慢...

2020-01-21 22:00:50

阅读数 113

评论数 0

原创 永兴的TensorFlow笔记-11 多层感知器下的手写字识别

一、多层感知器: 多层感知器(Multilayer Perceptron,缩写MLP)是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量。MLP可以被看作是一个有向图,由多个的节点层所组成,每一层都全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元(或称处理单元)。...

2020-01-19 12:18:21

阅读数 153

评论数 0

原创 永兴的Tensorflow笔记-10 正则化

一、什么是正则化? 在机器学习中正则化(英语:regularization)是指为解决适定性问题或过拟合而加入额外信息的过程。在机器学习和逆问题的优化过程中,正则项往往被加在目标函数当中。 过拟合:神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较低,说明模型的泛化能力差...

2020-01-15 11:38:10

阅读数 222

评论数 13

原创 Tensorflow ValueError: No variables to optimize.

一、环境: Tensorflow == 1.14 二、报错描述: ValueError: No variables to optimize. 三、原因分析: tensorflow是以计算图的形式的机器学习框架,没有可优化的参数,代表您没有定义相关的学习参数。 四、解决问题: 比如: w = tf...

2020-01-14 15:00:27

阅读数 207

评论数 0

原创 Mac 加载mnist数据集 报错(Process finished with exit code 134 (interrupted by signal 6: SIGABRT))

一、环境: MacOS pycharm tensorflow 1.14 numpy 16.04 二、报错描述: program. That is dangerous, since it can degrade performance or cause incorrect results. The ...

2020-01-12 14:44:30

阅读数 38

评论数 0

原创 永兴的tensorflow笔记-9 全连接MNIST初体验(手写字识别)

一、什么是全联接神经网络? 全连接神经网络(fully connected neural network),顾名思义,就是相邻两层之间任意两个节点之间都有连接。全连接神经网络是最为普通的一种模型(比如和CNN相比),由于是全连接,所以会有更多的权重值和连接,因此也意味着占用更多的内存和计算。 全...

2020-01-12 14:06:10

阅读数 113

评论数 0

原创 永兴的tensorflow笔记-8 反向传播(BP)以及优化函数详解

一、什么是反向传播? 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法计算对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 在神经...

2020-01-11 15:24:17

阅读数 189

评论数 0

原创 Python numpy.matrix 矩阵索引方法 (item)

一、环境: numpy 1.16.4 python 3.7 二、描述: import numpy as np a = np.mat([[1]]) print(type(a)) print("a:",a) print("a[0][0]:",a[0][0]) ...

2020-01-10 16:38:01

阅读数 550

评论数 0

原创 永兴的Tensorflow笔记-7 损失函数以及神经网络的基本属性

一、神经网络的基本属性: 神经网络 的四个基本属性: (1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。 (2)无限制性:神经网络通常由多个连接广泛...

2020-01-10 11:22:19

阅读数 156

评论数 0

原创 WARNING:tensorflow:From4: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead

一、环境: tensorflow 1.14 二、报错描述: WARNING:tensorflow:From /Users/suyongxing/gogodate/pythonProject/TensorLearn/lesson_one/test33.py:4: The name tf.Sessio...

2020-01-09 21:47:00

阅读数 540

评论数 0

原创 解决tensorflow下由于numpy版本问题运行造成的警告错误 (np_resource = np.dtype([(“ resource”,np.ubyte,1)])]) _np_qint8 等)

一、博主环境: python 3.7 tensorflow 1.14 numpy(原版本)1.17.0 二、报错描述: / .local / lib / python3.7 / site-packages / tensorboard / compat / tensorflow_stub / dty...

2020-01-09 21:41:22

阅读数 429

评论数 0

原创 永兴的tensorflow笔记-6 激活函数

一、基本神经元: 神经元模型:用数学公式表示为: f 为激活函数,w为权重,b为偏置。人工神经网络是由神经元构成的。 二、什么是激活函数? 将线性函数转变为非线性函数,负责将神经元的输入映射到输出端。 激活函数(Activation functions)对于人工神经网络模型的学习、理解非常复杂...

2020-01-09 14:58:18

阅读数 140

评论数 0

原创 永兴的tensorflow笔记-5 tf编程基础 1

一、TensorFlow的编程模型: TensorFlow的命名源于本身的运行原理。Tensor(张量)意味着N维度的数组,Flow (流)意味则 计算图 的计算。Tensorflow 是张量从一端流到另一端的计算过程,也就是Tensorflow的编程模型。 模型的运行机制: Tensorflo...

2020-01-08 15:38:03

阅读数 111

评论数 0

原创 永兴的Tensorflow笔记-3 神经网络开发基础

本章强烈建议和 lesson 4 一起学习 点击打开 一、什么是模型? TensorFlow计算模型 = 计算图 计算图的概念: TensorFlow的名字中已经说明了最重要的两个概念——Tensor(张量)和Flow(流)。TensorFlow是通过一个计算图的形式来表达计算的编程系统。Tens...

2020-01-07 20:25:43

阅读数 128

评论数 0

原创 永兴的Tensorflow笔记-4 初试机器学习

一、我们要做什么? 简单问题:如何让机器学会不通过明确的数学公式,输入任意值,输出他的3倍? 我们需要做什么:我们需要从一组看似混乱的数据中总结出 输出 约等于 3 倍 输入 的规律。 二、我们要怎么做? 一般机器学习分为四个步骤: 准备数据 搭建模型 迭代训练 使用模型 准备数据阶段我们会...

2020-01-07 16:22:06

阅读数 223

评论数 7

原创 永兴的TensorFlow笔记-2 基本概括

一、概括: TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小...

2020-01-06 18:41:15

阅读数 228

评论数 5

原创 解决 Mac Pycharm Process finished with exit code 134 (interrupted by signal 6: SIGABRT) 报错

一、错误描述: 1、环境: MacOS 15 Pycharm OpenCV 2、使用描述: Pycharm 中使用 OpenCV cv2.VideoCapture(0) 调用Mac本机摄像头报错 Process finished with exit code 134 (interrupted by...

2020-01-05 23:32:18

阅读数 386

评论数 0

原创 永兴的TensorFlow笔记-1 人工智能简介

一、什么是人工智能? 1、概念: 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做...

2020-01-05 16:52:59

阅读数 269

评论数 0

原创 永兴的笔记-OpenCV-11模版匹配 (python)

一、什么是模版匹配? 描述:模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。 局限性:模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化...

2020-01-05 15:34:11

阅读数 444

评论数 7

原创 永兴的笔记-OpenCV-14视频基本操作 1

一、什么是视频? 1、视频的基本概念: 视频(Video)泛指将一系列静态影像以电信号的方式加以捕捉、纪录、处理、储存、传送与重现的各种技术。连续的图像变化每秒超过24帧(frame)画面以上时,根据视觉暂留原理,人眼无法辨别单幅的静态画面;看上去是平滑连续的视觉效果,这样连续的画面叫做视频。 简...

2020-01-04 15:16:27

阅读数 429

评论数 7

原创 永兴的笔记-OpenCV-9 图像轮廓

一、什么是图像轮廓? 1、轮廓的基本概念: 构成图形或物体的外缘的线条。 2、轮廓检测: 轮廓检测指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程。它是目标检测、形状分析、目标识别和目标跟踪等技术的重要基础。 3、图像中的信号...

2020-01-03 19:21:06

阅读数 645

评论数 15

原创 永兴的笔记-OpenCV-7图像直方图 2 直方图均衡化、图像掩膜 、图像归一化、直方图的反向投影

一、直方图均衡化: 1、什么是直方图均衡化: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。 对比度指的是一幅图像中明暗区域最亮的白和最暗的黑之间不同亮度层级的测量,差异范围越大代表对比越大,差异范围越小代表对比越小,好的对比率120:1就可容易地显示生动、丰富的色彩,当对比...

2020-01-02 21:31:03

阅读数 476

评论数 6

原创 永兴的笔记-OpenCV-7图像直方图 1 基本介绍

一、什么是图像直方图: 直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。 图像直方图是数值数据分布的精确图形表示。 颜色直方图: 颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。...

2020-01-02 17:50:40

阅读数 603

评论数 6

原创 永兴的笔记-OpenCV-6图像梯度和边缘检测

一、什么是图像梯度: 图像的梯度就是描述图像中灰度的变化,微积分就是求函数的变化率,即导数(梯度)。图像的梯度相当于2个相邻像素之间的差值。 图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导: 在x方向,选取某个像素,假设其像素值是100,沿x方向的相邻像素分别是90,9...

2020-01-01 14:50:01

阅读数 501

评论数 9

原创 永兴的笔记-OpenCV-5图像滤波(python)

一、图像滤波是什么? 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。 二、OpenCV-Python中的图像滤波: 1、均值滤波: 均值滤波是典型的线性滤波算法,它是指在图像上对...

2019-12-30 15:12:29

阅读数 881

评论数 7

原创 永兴的笔记-OpenCV-4简单的图像变换

图像的几何变换是在不改变图像内容的情况下对图像进行空间几何变换。 1、图像缩放: cv2.resize(src,dsize,dst=None,fx=None,fy=None,interpolation=None) (提示:当一个参数默认等于None时是可选参数有默认值) src:处理待图像对象 d...

2019-12-29 09:53:59

阅读数 1184

评论数 16

原创 永兴的笔记-OpenCV-3基础图像处理1(python)

常见的色彩空间介绍: RGB: RGB (Red 红色,Green 绿色,Blue 蓝色),是根据人眼识别的颜色而定义的空间,可用于表示大部分颜色,也是图像处理中最基本、最常用、面向硬件的颜色空间,是一种光混合的体系. RGB 颜色模式用三维空间中的一个点表示一种颜色,每个点有三个分量,分别表示...

2019-12-28 20:09:35

阅读数 997

评论数 6

原创 永兴的笔记-OpenCV-2简单绘图

绘制直线: cv2.line(img,pt1,pt2,color,thickness=None,lineType=None,shift=None) img:绘制图形的图像 pt1:起始坐标 (x,y) pt2: 终点坐标 color:线的颜色 (B,G,R) thickness:线的粗细 默...

2019-12-28 17:00:01

阅读数 759

评论数 6

原创 永兴的笔记-OpenCV-1基本操作

1、图像的读取: cv2.imread(filename,flags=None) filename : 文件夹的路径 flags : 读取模式 cv2.IMREAD_COLOR 加载三通道彩色图像,忽略透明度 cv2.IMREAD_GRAYSCALE 灰度模式加载图像 cv2.IMREAD_UNC...

2019-12-28 16:52:05

阅读数 1045

评论数 15

原创 通用安装 tensorflow GPU版 环境方法

TensorFlow有CPU版本和GPU版本之分,CPU版本安装相对简单,按着TensorFlow的官方文档进行安装即可。但CPU版本只能使用CPU进行计算,计算效率低。对于简单的模型计算可以使用CPU模式,但对于复杂的模型训练就需要GPU的支持了。 一、基本环境要求: 系统:windows 、...

2019-12-23 18:50:20

阅读数 285

评论数 0

原创 Nvidia jetson tx2 详细安装、配置教程以及固定ip

jetson tx2 是什么??? 一、硬件组装: 1、将 Wi-Fi 天线插上 ,组装好充电器即可 2、接口介绍: USB接口只有一个(建议使用USB拓展,方便前期配置的时候连接键盘鼠标) 只能使用带有HDMI接口的显示器 建议配置时使用有线网络 二、开机配置: 插好电源并供电,接通显示...

2019-12-19 13:23:31

阅读数 180

评论数 0

原创 安装Pycharm2019安装配置anconda教程

一、获取安装包: Pycharm 官网 下载页面 :点击打开 Anconda 官网 下载页面 :点击打开 选择对应的系统和需要的版本进行下载,pycharm 分为付费专业版和社区免费版,一般对于初学者免费版足以。 二、pycharm的安装: 1、打开安装包,选择安装途径。 2、勾选两个框,继续...

2019-11-10 19:13:03

阅读数 627

评论数 0

原创 Anconda环境下载python包小白教程(图形界面+命令行+pycharm安装)

一:图形界面 1、打开Anconda 2、点击Environment3、将Installed点击为Not installed4、搜索django,勾选django之后点击绿色标识 5、点击Apply然后等待安装完成。 二、命令行 1、直接同时按Windows+R 2、输入cmd,点击确定...

2019-11-10 15:54:02

阅读数 179

评论数 0

原创 Mac OS 最新版 Pycharm 配置 anconda 环境 及 调整 主题 字体

一、获取安装包: Pycharm 官网 下载页面 :点击打开 Aconda 官网 下载页面 :点击打开 选择对应的系统和需要的版本进行下载,pycharm 分为付费专业版和社区免费版,一般对于初学者免费版足以。 二、python Pycharm 开发环境配置: 1、安装完成后打开软件 2、打开...

2019-10-18 09:54:34

阅读数 124

评论数 0

原创 图像数据标记-图片筛选教程

一、查询该种药材资料 1、首先看其百度百科资料 2、简单查看后点击 其 图册 3、同一个种类的可能有许多种 分类 和 形态 ,在数据标记时统一标记为该种类编号(统一编号),也可只标记常见形态和分类。 4、如果仔细查看完成后对该类药材还是不够认识(建议都看一下,筛选更加轻松)(筛选时优先级高...

2019-10-02 12:35:17

阅读数 175

评论数 0

原创 标记文件复查教程-图像标记

1、打开精灵标记助手 2、点击新建 3、选择位置标注 5、项目名称为: 标记物体种类的编号 + 复查 如:x11x1 复查 图片文件夹为:图片文件夹的路径 如:D:/user/陈皮 分类值:标记物体种类的编号 如:x11x1 6、点击导入 7、导入文件夹路径为该图片文件夹中 outpu...

2019-09-29 15:34:33

阅读数 140

评论数 0

提示
确定要删除当前文章?
取消 删除