c++回溯算法 批作业调度问题
#include<iostream>
using namespace std;
int x[100]; //当前作业调度————其中一种排列顺序
int bestx[100]; //当前最优作业调度
int m[100][100];//各作业所需的处理时间
//M[j][i]代表第j个作业在第i台机器上的处理时间
int f1=0;//机器1完成处理时间
int f2=0;//机器2完成处理时间
int cf=0;//完成时间和
int bestf=10000;//当前最优值,即最优的处理时间和
int n;//作业数
void swap(int &a,int &b)
{
int temp=a;
a=b;
b=temp;
}
void Backtrack(int t)
{ //t用来指示到达的层数(第几步,从0开始),同时也指示当前执行完第几个任务/作业
int tempf,j;
if(t>n) //到达叶子结点,搜索到最底部
{
if(cf<bestf)
{
for(int i=1; i<=n; i++)
bestx[i]=x[i];//更新最优调度序列
bestf=cf;//更新最优目标值
}
}
else //非叶子结点
{
for(j=t; j<=n; j++) //j用来指示选择了哪个任务/作业(也就是执行顺序)
{
f1+=m[x[j]][1];//选择第x[j]个任务在机器1上执行,作为当前的任务
tempf=f2;//保存上一个作业在机器2的完成时间
f2=(f1>f2?f1:f2)+m[x[j]][2];//保存当前作业在机器2的完成时间
cf+=f2; //在机器2上的完成时间和
//如果该作业处理完之后,总时间已经超过最优时间,就直接回溯。
//剪枝函数
if(cf<bestf) //总时间小于最优时间
{
swap(x[t],x[j]); //交换两个作业的位置,把选择出的原来在x[j]位置上的任务调到当前执行的位置x[t]
Backtrack(t+1); //深度搜索解空间树,进入下一层
swap(x[t],x[j]); //进行回溯,还原,执行该层的下一个任务 //如果是叶子节点返回上一层
}
//回溯需要还原各个值
f1-=m[x[j]][1];
cf-=f2;
f2=tempf;
}
}
}
int main()
{
int i,j;
cout<<"请输入作业数:"<<endl;
cin>>n;
cout<<"请输入在各机器上的处理时间"<<endl;
for(i=1; i<=n; i++) //i从1开始
for(j=1; j<=2; j++)
cin>>m[i][j];//第j个作业,第i台机器的时间值
for(i=1; i<=n; i++)
x[i]=i;//初始化当前作业调度的一种排列顺序
Backtrack(1);
cout<<"调度作业顺序:"<<endl;
for(i=1; i<=n; i++)
cout<<bestx[i]<<' ';
cout<<endl;
cout<<"处理时间:"<<endl;
cout<<bestf;
return 0;
}
/*
测试数据:
请输入在各机器上的处理时间
2 1
3 1
2 3
调度作业顺序:
1 3 2
处理时间:
18
*/
364

被折叠的 条评论
为什么被折叠?



