学习笔记(01):人工智能-数学基础视频课程-python工具包介绍

已标记关键词 清除标记
相关推荐
<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlow、Pyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> ·             第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> ·             第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> ·             第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> ·             第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的神经网络和深度学习。 </p>
<p class="ql-text-indent-1 ql-long-39788408" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-39788408" style="color:#000000;">人工智能</span><span class="ql-author-39788408" style="color:#000000;">作为现在最为火热的领域,使得机器学习被越来越多的人所了解。机器学习难学,主要的难度在于算法</span><span class="ql-author-39788408" style="color:#000000;">模型多不好理解,各种各样的工具不知道如何使用,实际项目不知道如何开发。</span><span style="color:#000000;">本门课程将系统入门机器学习课程内容不光是对算法的学习,还包括诸如算法的评价,方法的选择,模型的优化,参数的调整,数据的整理,等等一系列工作。让大家对机器学习算法有个全面的了解,并</span><span style="color:#000000;">应用到你的实际项目中。</span> </p> <p> <span style="color:#337FE5;"><strong>整体课程设计</strong></span><strong></strong> </p> <p class="a" style="text-indent:21pt;"> 课程的所有内容都经过讲师的精心挑选。同时,在层次划分上,循序渐进,难易兼顾。让学员们更容易的入门。课程中既包含核心的基础知识,也有高级的进阶操作,做到了<span>“</span>老少皆宜<span>”</span>。 </p> <p> <span style="color:#337FE5;">课程分为基础篇,进阶篇和实战篇</span> </p> <p> <b>基础篇</b><span style="line-height:1.5;">:基础篇主要讲解高数基础。同时加入了很多</span><span style="line-height:1.5;">Python</span><span style="line-height:1.5;">入门算法,为之后自己动手做实验,打好基础。</span> </p> <p> <b>进阶篇:</b><span style="line-height:1.5;">之后是机器学习的核心,精选线性回归、逻辑回归、聚类算法、</span><span style="line-height:1.5;">EM</span><span style="line-height:1.5;">算法等等机器学习的经典算法。</span> </p> <p> <b>实战篇:</b><span style="line-height:1.5;">真正要掌握一门编程语言,仅仅学会分散的知识点是不够的,还必须要把知识点串联起来,做一些实际项目才能有更深的领悟与提高。我会通过</span><span style="line-height:1.5;">Kmeans</span><span style="line-height:1.5;">篮球数据分类这个具体的实战案例,带你综合运用前面所学的机器学习知识。</span> </p> <p> <img src="https://img-bss.csdnimg.cn/202006220524105596.jpg" alt="" /> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页