牛客练习赛100E.小红的公倍数(线段树+究极卡常

1.操作为求区间lcm,并将区间所有数变成lcm。
2.数据范围:n、a[i]、q <= 20000
3.众所周知,lcm是一堆数的素因子的并,考虑分别维护每个数的素因子数量,那么求lcm就是求区间中每个素因子的最大幂次。20000里面有2267个素数,考虑开2267个线段树来维护每个素因子在不同区间的最大值。(然后噩梦就开始了
4.赛时空间爆掉了,我一想每个素因子最多16个,不用int了,换成short(范围是30000多),刚好也够20000的限制。(埋下伏笔)。
5.果然空间够了,开始不断地超时…我算了一下我的算法是时限的2~3倍,直到比赛结束也没搞出来。
6.昨天我做某个开多线段树的题的时候,一直超时,发现如果可以把多个线段树合成一只线段树来维护,大概可以省掉一半的时间,因为少了很多线段树分治的函数调用。我恍然大悟。
7.回到这题,改了以后样例通过率5% -> 65%。啊这…我印象里有一个范围是128的数据类型,在这道题给素因子用,还能加速!查了查,居然是char!ok,直接把线段树里存素因子的数组换成char类型!65% -> 90%,而且不是超时了,变成段错误了!
8.段错误?我想怎么会越界呢?上界我控制的很好啊,然后开更大的数组,还是越界。这时我想起了之前short,在线段树里面会用到的下标最大是n*4 == 80000,这肯定爆short了,于是把线段树下标相关换成int,终于AC。
在这里插入图片描述

#include <cstdio>
#include <iostream>
#include <algorithm>
#define ll short
#define maxn 20202
#define mod 1000000007

using namespace std;
long long n,q,a[20202];
long long power[2323][18];
char maxxx(char &a,char &b){
    if(a > b)return a;
    else return b;
}

#define shaimax 20000
long long pcnt,prime[shaimax+10],isn_prime[shaimax+10];
void shai(){
    for(ll i = 2 ; i <= shaimax ; ++i){
        if(!isn_prime[i])
            prime[++pcnt] = i;
        for(ll j = 1 ; j <= pcnt && prime[j] * i <= shaimax ; ++j){
            isn_prime[i*prime[j]] = 1;
            if(i % prime[j] == 0)
                break;
        }
    }
}
struct poww{
    char po[2323];
}minNN;
struct segTree{ ///线段树之动态更新区间最大值(不涉及加减、只更新值、查询)
    poww tree[maxn*4],tap[maxn*4];
    int ls(int x){return x << 1;}
    int rs(int x){return x << 1|1;}
    void change(poww &a1,poww &a2){
        for(ll i = 1 ; i <= pcnt ; ++i){
            a1.po[i] = maxxx(a1.po[i] , a2.po[i]);
        }
    }
    void push_down(int id){
        change(tree[ls(id)],tap[id]);
        change(tree[rs(id)],tap[id]);
        change(tap[ls(id)],tap[id]);
        change(tap[rs(id)],tap[id]);
        tap[id] = minNN;
    }
    void update(ll nx,ll ny,ll l,ll r,int id,poww val){
        if(nx <= l && r <= ny){
            change(tree[id],val);
            change(tap[id],val);
            return;
        }
        push_down(id);
        ll mid = (l+r)/2;
        if(nx <= mid)update(nx,ny,l,mid,ls(id),val);
        if(mid+1 <= ny)update(nx,ny,mid+1,r,rs(id),val);
        tree[id] = minNN;
        change(tree[id] , tree[ls(id)]);
        change(tree[id] , tree[rs(id)]);
    }
    poww query(ll nx,ll ny,ll l,ll r,int id){
        if(nx <= l && r <= ny){
            return tree[id];
        }
        push_down(id);
        ll mid = (l+r)/2;
        poww lq = minNN , rq = minNN;
        if(nx <= mid)lq = query(nx,ny,l,mid,ls(id));
        if(mid+1 <= ny)rq = query(nx,ny,mid+1,r,rs(id));
        change(lq,rq);
        return lq;
    }
}st;

void scan(){
    cin >> n >> q ;
    for(ll i = 1 ; i <= n ; ++i){
        cin >> a[i] ;
    }
}

void solve(){
    shai();
    for(long long j = 1 ; j <= pcnt ; ++j){     ///预处理素因子的幂
        power[j][0] = 1;
        for(long long i = 1 ; i <= 16 ; ++i){
            power[j][i] = power[j][i-1] * prime[j] %mod;
        }
    }
    for(ll i = 1 ; i <= n ; ++i){
        poww now = minNN;
        for(ll j = 1 ; j <= pcnt ; ++j){
            ll x = a[i] , num = 0 , pj = prime[j];
            while(x%pj == 0){
                x /= pj;
                ++num;
            }
            now.po[j] = num;
        }
        st.update(i,i,1,n,1,now);
    }
    while(q--){
        long long ans = 1;
        ll l,r;
        cin >> l >> r ;
        poww now = st.query(l,r,1,n,1);
        for(ll j = 1 ; j <= pcnt ; ++j){
            ll num = now.po[j];
            ans = ans * power[j][num] %mod;
        }
        st.update(l,r,1,n,1,now);
        cout << ans << endl ;
    }
}

int main(){
    ios::sync_with_stdio(false);   cin.tie(0);cout.tie(0);
        scan();
        solve();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值