注意力机制的代码实现

一、前言

注意力机制的核心思想是,在处理一个序列时,模型应该关注序列中的哪些部分。在自然语言处理中,这通常意味着在生成一个词时,模型应该关注输入序列中的哪些词。注意力机制通过计算一个权重矩阵来实现这一点,这个权重矩阵表示输入序列中每个词对当前位置的重要性。

注意力机制的输入包括三个矩阵:query、key和value。这三个矩阵通常是通过嵌入层和神经网络层得到的。注意力机制的输出是一个加权后的value矩阵,这个矩阵表示了输入序列中每个词对当前位置的重要性。

以下是一些常见的注意力类型:

二、代码实现

解码器层需要把mask传入

def attention(query, key, value, mask=None, dropout=None):
    # 将query矩阵的最后一个维度值作为d_k
    d_k = query.size(-1)
    # 将key的最后两个维度互换(转置),与query矩阵相乘,除以d_k开根号
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask==1, -1e9)
    p_attn = torch.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

注意力机制(Self-Attention)是一种用于处理序列数据的机制,常用于自然语言处理任务中。下面是一个简单的自注意力机制代码实现示例: ```python import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, input_dim): super(SelfAttention, self).__init__() self.query = nn.Linear(input_dim, input_dim) self.key = nn.Linear(input_dim, input_dim) self.value = nn.Linear(input_dim, input_dim) self.softmax = nn.Softmax(dim=-1) def forward(self, x): q = self.query(x) k = self.key(x) v = self.value(x) scores = torch.matmul(q, k.transpose(-2, -1)) attention_weights = self.softmax(scores) output = torch.matmul(attention_weights, v) return output # 使用示例 input_dim = 512 seq_len = 10 batch_size = 32 input_data = torch.randn(batch_size, seq_len, input_dim) self_attention = SelfAttention(input_dim) output = self_attention(input_data) print(output.shape) ``` 上述代码中,`SelfAttention` 类定义了一个自注意力机制模块。在 `forward` 方法中,通过线性变换将输入数据 `x` 映射到查询(query)、键(key)和值(value)空间。然后计算查询和键的相似度得分,并通过 softmax 函数将得分转化为注意力权重。最后,将注意力权重与值相乘得到输出。 相关问题: 1. 什么是自注意力机制? 2. 自注意力机制的作用是什么? 3. 自注意力机制在自然语言处理中的应用有哪些? 4. 自注意力机制与传统的注意力机制有什么区别? 5. 自注意力机制的计算复杂度如何?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木珊数据挖掘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值