【笔记】李宏毅《反向传播(选修)》笔记分享

前言

前面两节课学了深度学习中的基础概念,今天主要去学习深度学习中一个非常重要的算法——反向传播算法。


前面学的梯度下降算法:
在这里插入图片描述
可以看到,求梯度时,上图红色方框里要求的梯度向量是很大很大的。
为了高效计算这个梯度,我们使用反向传播算法。
本质:反向传播算法并不是一个和梯度下降法不同的训练的方法,他就是一个梯度下降的方法,只是它计算这个梯度向量的效率比较高。


反向传播算法并没有什么十分高深的数学,你唯一需要记得的就是:
Chain Rule(链式法则)—这个考研高数学过哈哈哈:
在这里插入图片描述
然后我们具体推导反向传播算法:
在这里插入图片描述
现在我们就focus在怎么计算最右边Cn那个式子
先取神经网络中的某一个神经元:
在这里插入图片描述
前面我们已经学过怎么由x变成那个“蓝色的蚯蚓”,如图中公式,而我们取其中的参数w,尝试所谓反向传播算法,先用一个链式法则,然后我们定义其中一部分是前向传递,其中一部分是反向传递,如图框柱部分所示:
在这里插入图片描述
如图所示,前向传播为:αz/αw,后向传播为:αC/αz


对于前向传播,αz/αw这个偏导值很简单,你从那个z=x1w1+x2w2+b就能直接看出来了,下面这个图代入具体数值,方便理解:
在这里插入图片描述
难的是反向传递,妙的也是反向传递αC/αz:
在这里插入图片描述
我们先正向推一下,如上图,这时转化为求αC/αz’和αC/αz’’
那么怎么求呢?
反向求解:
在这里插入图片描述
因为最后一定会有一个output—y嘛,那么假如αC/αz’和αC/αz’’是最后一级,之后就输出得到了y,那么αC/αz’和αC/αz’’自然可以根据y由链式法则来求得。如果不是最后一级,那么也可以由上一级推出,而上一级由上上一级…一直到最后一级(可以理解为一个反向递归)
在这里插入图片描述
在这里插入图片描述
怎么样,是不是很聪明!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值