深度学习:马氏距离

马氏距离(Mahalanobis Distance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。

公式

马氏距离计算两个向量 ( x ) 和 ( y ) 之间的距离,定义为:

  D M ( x , y ) = ( x − y ) T S − 1 ( x − y )   \ D_M(x, y) = \sqrt{(x - y)^T S^{-1} (x - y)} \  DM(x,y)=(xy)TS1(xy)  

其中:

  • ( x ) 和 ( y ) 是两个 n 维向量(数据点)。
  • ( S ) 是协方差矩阵(covariance matrix)。
  • S − 1 S^{-1} S1 是协方差矩阵的逆矩阵。

特点

  1. 尺度无关:马氏距离消除不同维度间量纲的影响。
  2. 相关性处理:它能处理不同变量之间的相关性,适合高维数据分析。
  3. 非等距:马氏距离根据数据分布的不同方向具有非等距特性。

使用场景

  • 异常检测:用于判断数据点是否属于某一类分布,常用于异常检测。
  • 聚类分析:适合用于高维聚类问题。
  • 多元正态分布:衡量数据点与均值之间的距离。

与欧氏距离的区别

  • 欧氏距离假设各特征相互独立,不考虑变量之间的协方差。
  • 马氏距离处理相关性高的数据时比欧氏距离更加精确。

Python 实现

import numpy as np
from scipy.spatial.distance import mahalanobis

# 样本数据
X = np.array([[2, 4, 6], [1, 3, 5], [4, 6, 8]])

# 计算协方差矩阵
cov_matrix = np.cov(X.T)

# 计算协方差矩阵的逆矩阵
inv_cov_matrix = np.linalg.inv(cov_matrix)

# 计算马氏距离
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

dist = mahalanobis(x, y, inv_cov_matrix)
print("马氏距离:", dist)

这个示例中,我们计算样本数据的协方差矩阵及其逆矩阵,之后使用 scipy.spatial.distance.mahalanobis 函数计算两个点之间的马氏距离。

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值