题目
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式
每个测试输入包含 1 个测试用例,即给出正整数 n 的值
输出格式
输出从 n 计算到 1 需要的步数
输入样例
3
输出样例
5
思路
水题,看代码
#include <bits/stdc++.h>
using

本文探讨了卡拉兹猜想,即对于任何正整数n,通过偶数时除以2,奇数时计算3n+1再除以2的步骤,最终会到达n=1。这个看似简单的猜想曾引发数学界的热烈讨论。题目要求计算不超过1000的正整数n达到1所需的步数,例如输入3,输出为5步。解决此问题的算法相对直接,主要涉及循环和条件判断。
最低0.47元/天 解锁文章
123

被折叠的 条评论
为什么被折叠?



