题目
让我们定义dn为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N(<105),请计算不超过N的满足猜想的素数对的个数。
输入格式
输入在一行给出正整数N。
输出格式
在一行中输出不超过N的满足猜想的素数对的个数。
输入样例
20
输出样例
4
思路
方法一:利用简单判别素数的方法将所有小于N的素数找出来并存到数组Prime中,最后判定是否可以存在Prime[i] - Prime[i-1] == 2 存在则ans++
方法二:素数筛
用布尔数组筛选素数,默认全部是素数
逐步遍历过去,若是素数则存入素数数组中,并将其倍数筛选出来
如果超过n就退出
而每次循环就会仍为false的数字加入素数数组,因为合数的因子一定比自己小
遍历因子时必然作为倍数出现过
所以当前布尔数组仍是false则说明是素数
(还未理解)
#include <bits/stdc++.h>
#define maxn 100005
#define _for(i,a,b) for(int i = (a);i < (b);i++)
using namespace std;
int Prime[maxn];
int cnt = 0;
bool isPrime(int n){
int x;
if(n <= 1) return false;
for(x = 2;x * x <= n;x++){
if(n % x == 0) return false;
}
return true;
}
int main(){
int N;
cin >> N;
int ans = 0;
for(int i = 2;i<=N;i++){
if(isPrime(i))
Prime[cnt++] = i;
}
for(int i = 1;i<=cnt;i++){
if(Prime[i] - Prime[i - 1] == 2)
ans++;
}
cout << ans << endl;
return 0;
}
#include <bits/stdc++.h>
#define maxn 100005
#define _for(i,a,b) for(int i = (a);i < (b);i++)
using namespace std;
bool vis[maxn];
int Prime[maxn];
int cnt = 0;
void Shift(int n){
int i,j;
vis[1] = 1;
for(i =2;i<=n;i++){
if(vis[i] == false) Prime[++cnt] = i; //遍历因子时会把合数都筛出去
for(j = 1;j <= cnt && Prime[j] * i <= n;j++){
vis[Prime[j] * i] = 1;
if(i % Prime[j] == 0) break;
}
}
}
int main()
{
int N,i,j,ans = 0;
cin >> N;
Shift(N);
for(i = 2;i<=N;i++){
if(Prime[i] - Prime[i-1] == 2)
ans++;
}
cout << ans << endl;
return 0;
}
该博客讨论了素数对猜想,即存在无限多对相差2的相邻素数。针对给定不超过N的正整数,介绍了两种计算满足猜想素数对的方法:一是直接找出所有素数并检查差值;二是使用素数筛法。输入样例N=20,输出为4,表明有4对素数满足条件。
744

被折叠的 条评论
为什么被折叠?



