树状数组 数据结构详解与模板(可能是最详细的了)

树状数组基础

本文转载自:https://bestsort.cn/2019/04/26/195/

树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于数组的单点修改&&区间求和. 另外一个拥有类似功能的是线段树. 具体区别和联系如下: 1.两者在复杂度上同级, 但是树状数组的常数明显优于线段树, 其编程复杂度也远小于线段树. 2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决. 3.树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树。 上面出现了一个新名词:lowbit.其实lowbit(x)就是求x最低位的1;

下面加图进行解释 对于一般的二叉树,我们是这样画的:

在这里插入图片描述
把位置稍微移动一下,便是树状数组的画法

在这里插入图片描述

上图其实是求和之后的数组,原数组和求和数组的对照关系如下,其中a数组是原数组,c数组是求和后的数组:

在这里插入图片描述

C[i]代表 子树的叶子结点的权值之和 如图可以知道

C[1]=A[1];

C[2]=A[1]+A[2];

C[3]=A[3];

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

C[6]=A[5]+A[6];

C[7]=A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

再将其转化为二进制看一下:

C[1] = C[0001] = A[1];

C[2] = C[0010] = A[1]+A[2];

C[3] = C[0011] = A[3];

C[4] = C[0100] = A[1]+A[2]+A[3]+A[4];

C[5] = C[0101] = A[5];

C[6] = C[0110] = A[5]+A[6];

C[7] = C[0111] = A[7];

C[8] = C[1000] = A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

对照式子可以发现 C [ i ] = A [ i − 2 k + 1 ] + A [ i − 2 k + 2 ] + … … A [ i ] C[i]=A[i−2^{k+1}]+A[i−2^{k+2}]+……A[i] C[i]=A[i2k+1]+A[i2k+2]+A[i];

k k k i i i 的二进制中从最低位到高位连续零的长度)例如 i = 8 ( 1000 ) i=8(1000) i=8(1000) 时, k = 3 k=3 k=3;

C [ 8 ] = A [ 8 − 2 3 + 1 ] + A [ 8 − 2 3 + 2 ] + … … + A [ 8 ] C[8]=A[8−2^3+1]+A[8−2^3+2]+……+A[8] C[8]=A[823+1]+A[823+2]++A[8] 即为上面列出的式子

在这里插入图片描述
现在我们返回到 lowbit 中来 其实不难看出 lowbit(i) 便是上面的 2 k 2^k 2k 因为 2 k 2^k 2k 后面一定有 k 个 0 比如说 2 5 = = > 100000 2^5==>100000 25==>100000正好是 i i i 最低位的 1 加上后缀 0 所得的值 开篇就说了, l o w b i t ( x ) lowbit(x) lowbit(x) 是取出 x 的最低位 1;具体操作为:

int lowbit(x){return x&(-x);}

极致简短! 现在我们来理解一下这行代码: 我们知道,对于一个数的负数就等于对这个数取反 +1 以二进制数 11010 为例: 11010 的补码为 00101,加 1 后为 00110,两者相与便是最低位的 1 其实很好理解,补码和原码必然相反,所以原码有 0 的部位补码全是 1 ,补码再 +1 之后由于进位那么最末尾的 1 和原码 最右边的 1 一定是同一个位置(当遇到第一个 1 的时候补码此位为 0 ,由于前面会进一位,所以此位会变为 1 ) 所以我们只需要进行a&(-a)就可以取出最低位的 1 了 会了 l o w b i t lowbit lowbit,我们就可以进行区间查询和单点更新了.

单点更新:
继续看开始给出的图 此时如果我们要更改A[1] 则有以下需要进行同步更新

1(001) 

C[1]+=A[1] 

lowbit(1)=001 1+lowbit(1)=2(010) C[2]+=A[1] 

lowbit(2)=010 2+lowbit(2)=4(100) C[4]+=A[1] 

lowbit(4)=100 4+lowbit(4)=8(1000) C[8]+=A[1] 

换成代码就是:

void update(int x,int y,int n){
    for(int i=x;i<=n;i+=lowbit(i))    //x为更新的位置,y为更新后的数,n为数组最大值
        c[i] += y;
}

区间查询:
举个例子

i=5

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

可以推出: sum(i = 5) ==> C[4]+C[5];

序号写为二进制: sum(101)=C[(100)]+C[(101)];

第一次 101,减去最低位的 1 就是 100;

其实也就是单点更新的逆操作 代码如下


int getsum(int x){
    int ans = 0;
    for(int i=x;i;i-=lowbit(i))
        ans += c[i];
    return ans;
}

lowbit 会了,区间查询有了,单点更新也有了接下来该做题了 HDU1166敌兵布阵

附代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <vector>
#define For(a,b) for(int a=0;a<b;a++)
#define mem(a,b) memset(a,b,sizeof(a))
#define _mem(a,b) memset(a,0,(b+1)<<2)
#define lowbit(a) ((a)&-(a))
using namespace std;
typedef long long ll;
const int maxn =  5*1e4+5;
const int INF = 0x3f3f3f3f;
int c[maxn];
void update(int x,int y,int n){
    for(int i=x;i<=n;i+=lowbit(i))
        c[i] += y;
}
int getsum(int x){
    int ans = 0;
    for(int i=x;i;i-=lowbit(i))
        ans += c[i];
    return ans;
}
int main()
{
    int t;
    int n;
    int x,y,z;
    string s;
    cin >> t ;
    for(int j=1;j<=t;j++){
        scanf("%d",&n);
        _mem(c,n);
    
            //初始化数组中前n+1个数为0
        for(int i=1;i<=n;i++){
            scanf("%d",&z);
            update(i,z,n);
        }
        cout <<"Case "<<j<<":"<<endl;
        while(1){
            cin >> s;
            if(s[0] == 'E')
                break;
            scanf("%d%d",&x,&y);
            if(s[0] == 'Q')
                cout << getsum(y)-getsum(x-1)<<endl;
            else if(s[0] == 'A')
                update(x,y,n);
            else
                update(x,-y,n);
        }
    }
    return 0;
}

高级操作

求逆序对
操作
对于数组 a,我们将其离散化处理为数组 b.区间查询与单点修改代码如下:


void update(int p)
{
    while(p<=n)
    {
        a[p] ++;
        p+=lowbit(p);
    }
}

int getsum(int p)
{
    int res = 0;
    while(p)
        res += a[p],p -= lowbit(p);
    return res;
}

a 的逆序对个数为:

for(int i=1;i<=n;i++){
    update(b[i]+1);
    res += i-getsum(b[i]+1);
}

res 就是逆序对个数,ask,需注意b[i]应该大于0

原理
此部分来自 ssimple_y 的博客 第一次插入的时候把5这个位置上加上1,read(x)值就是1,当前已经插入了一个数,所以他前面比他大的数的个数就等于 i - read(x) = 1 - 1 = 0,所以总数 sum += 0

在这里插入图片描述
第二次插入的时候,read(x)的值同样是1,但是 i - read(x) = 2 - 1 = 1,所以sum += 1

在这里插入图片描述
第三次的时候,read(x)的值是2,i - read(x) = 3 - 2 = 1,所以sum += 1

在这里插入图片描述

第四次,read(x)的值是1,i - read(x) = 4 - 1 = 3,所以sum += 3

在这里插入图片描述
第五次,read(x)的值是1,i - read(x) = 5 - 1 = 4,所以sum += 4

在这里插入图片描述
这样整个过程就结束了,所有的逆序对就求出来了。

求区间最大值

void Update(int i,int v)
{
    while(i<=maxY)
    {
        t[i] = max(t[i],v);
        i += lowbit(i);
    }
}
int query(int i)
{
    int ans = 0;
    while(i)
    {
        ans = max(ans,t[i]);
        i -= lowbit(i);
    }
    return ans;
}

区间修改+单点查询
通过“差分”(就是记录数组中每个元素与前一个元素的差),可以把这个问题转化为问题1。

查询
设原数组为 a [ i ] a[i] a[i], 设数组 d [ i ] = a [ i ] − a [ i − 1 ] ( a [ 0 ] = 0 ) d[i]=a[i]-a[i-1](a[0]=0) d[i]=a[i]a[i1](a[0]=0),则 a [ i ] = ∑ i j d [ j ] a[i]=\sum_{i}^{j}d[j] a[i]=ijd[j],可以通过 d [ i ] d[i] d[i]求的前缀和查询。

修改
当给区间 [ l , r ] [l,r] [l,r]加上x的时候, a [ l ] a[l] a[l]与前一个元素 a [ l − 1 ] a[l-1] a[l1] 的差增加了x, a [ r + 1 ] a[r+1] a[r+1] a [ r ] a[r] a[r]的差减少了x。根据d[i]数组的定义,只需给a[l]加上 x, 给 a [ r + 1 ] a[r+1] a[r+1] 减去x即可

void add(int p, int x){ //这个函数用来在树状数组中直接修改
    while(p <= n) sum[p] += x, p += p & -p;
}
void range_add(int l, int r, int x){ //给区间[l, r]加上x
    add(l, x), add(r + 1, -x);
}
int ask(int p){ //单点查询
    int res = 0;
    while(p) res += sum[p], p -= p & -p;
    return res;
}

区间修改+区间查询
这是最常用的部分,也是用线段树写着最麻烦的部分——但是现在我们有了树状数组! 怎么求呢?我们基于问题2的“差分”思路,考虑一下如何在问题2构建的树状数组中求前缀和: 位置p的前缀和 =
在这里插入图片描述
在等式最右侧的式子 s u m i = 1 p s u m j = 1 i d [ j ] sum{i=1}^{p}sum{j=1}^{i}d[j] sumi=1psumj=1id[j]中,d[1]被用了p次,d[2]被用了p-1次……那么我们可以写出: 位置p的前缀和 =
在这里插入图片描述
那么我们可以维护两个数组的前缀和:

一个数组是 sum1[i]=d[i]
另一个数组是 sum2[i]=d[i]∗i
查询
位置p的前缀和即:(p+1)∗sum1数组中p的前缀和 - sum2数组中p的前缀和。 区间[l, r]的和即:位置r的前缀和 - 位置l的前缀和。

修改
对于sum1数组的修改同问题2中对d数组的修改。 对于sum2数组的修改也类似,我们给 sum2[l] 加上 l x,给 sum2[r + 1] 减去 (r + 1) x。

void add(ll p, ll x){
    for(int i = p; i <= n; i += i & -i)
        sum1[i] += x, sum2[i] += x * p;
}
void range_add(ll l, ll r, ll x){
    add(l, x), add(r + 1, -x);
}
ll ask(ll p){
    ll res = 0;
    for(int i = p; i; i -= i & -i)
        res += (p + 1) * sum1[i] - sum2[i];
    return res;
}
ll range_ask(ll l, ll r){
    return ask(r) - ask(l - 1);
}

用这个做区间修改区间求和的题,无论是时间上还是空间上都比带lazy标记的线段树要优。 二维树状数组 我们已经学会了对于序列的常用操作,那么我们不由得想到(谁会想到啊喂)……能不能把类似的操作应用到矩阵上呢?这时候我们就要写二维树状数组了! 在一维树状数组中,tree[x](树状数组中的那个“数组”)记录的是右端点为x、长度为lowbit(x)的区间的区间和。 那么在二维树状数组中,可以类似地定义tree[x][y]记录的是右下角为(x, y),高为lowbit(x), 宽为 lowbit(y)的区间的区间和。

单点修改+区间查询

void add(int x, int y, int z){ //将点(x, y)加上z
    int memo_y = y;
    while(x <= n){
        y = memo_y;
        while(y <= n)
            tree[x][y] += z, y += y & -y;
        x += x & -x;
    }
}
void ask(int x, int y){//求左上角为(1,1)右下角为(x,y) 的矩阵和
    int res = 0, memo_y = y;
    while(x){
        y = memo_y;
        while(y)
            res += tree[x][y], y -= y & -y;
        x -= x & -x;
    }
}

区间修改 + 单点查询
我们对于一维数组进行差分,是为了使差分数组前缀和等于原数组对应位置的元素。 那么如何对二维数组进行差分呢?可以针对二维前缀和的求法来设计方案。 二维前缀和: s u m [ i ] [ j ] = s u m [ i − 1 ] [ j ] + s u m [ i ] [ j − 1 ] − s u m [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] sum[i][j]=sum[i−1][j]+sum[i][j−1]−sum[i−1][j−1]+a[i][j] sum[i][j]=sum[i1][j]+sum[i][j1]sum[i1][j1]+a[i][j] 那么我们可以令差分数组 d [ i ] [ j ] d[i][j] d[i][j]表示 a [ i ] [ j ] a[i][j] a[i][j] a [ i − 1 ] [ j ] + a [ i ] [ j − 1 ] − a [ i − 1 ] [ j − 1 ] a[i−1][j]+a[i][j−1]−a[i−1][j−1] a[i1][j]+a[i][j1]a[i1][j1]的差。 例如下面这个矩阵:

 1  4  8
 6  7  2
 3  9  5

对应的差分数组就是

 1  3  4
 5 -2 -9
-3  5  1

当我们想要将一个矩阵加上x时,怎么做呢? 下面是给最中间的3*3矩阵加上x时,差分数组的变化:

0  0  0  0  0
0 +x  0  0 -x
0  0  0  0  0
0  0  0  0  0
0 -x  0  0 +x

这样给修改差分,造成的效果就是:

0  0  0  0  0
0  x  x  x  0
0  x  x  x  0
0  x  x  x  0
0  0  0  0  0

那么我们开始写代码吧!

void add(int x, int y, int z){ 
    int memo_y = y;
    while(x <= n){
        y = memo_y;
        while(y <= n)
            tree[x][y] += z, y += y & -y;
        x += x & -x;
    }
}
void range_add(int xa, int ya, int xb, int yb, int z){
    add(xa, ya, z);
    add(xa, yb + 1, -z);
    add(xb + 1, ya, -z);
    add(xb + 1, yb + 1, z);
}
void ask(int x, int y){
    int res = 0, memo_y = y;
    while(x){
        y = memo_y;
        while(y)
            res += tree[x][y], y -= y & -y;
        x -= x & -x;
    }
}

区间修改 + 区间查询
类比之前一维数组的区间修改区间查询,下面这个式子表示的是点(x, y)的二维前缀和: ∑ i = 1 x ∑ j = 1 y ∑ k = 1 i ∑ h = 1 j d [ h ] [ k ] ∑i=1x∑j=1y∑k=1i∑h=1jd[h][k] i=1xj=1yk=1ih=1jd[h][k]
(d[h][k]为点(h, k)对应的“二维差分”(同上题))

这个式子炒鸡复杂:O(n4)的时间复杂度!,但利用树状数组,我们可以把它优化到 O ( l o g 2 n ) ! 首 先 , 类 比 一 维 数 组 , 统 计 一 下 每 个 d [ h ] [ k ] 出 现 过 多 少 次 。 d [ 1 ] [ 1 ] 出 现 了 x y 次 , d [ 1 ] [ 2 ] 出 现 了 x ( y − 1 ) 次 … … d [ h ] [ k ] 出 现 了 ( x − h + 1 ) ( y − k + 1 ) 次 。 那 么 这 个 式 子 就 可 以 写 成 : s u m i = 1 x s u m j = 1 y d [ i ] [ j ] ( x + 1 − i ) ( y + 1 − j ) O(log2n)!首先,类比一维数组,统计一下每个d[h][k]出现过多少次。d[1][1]出现了x_y次,d[1][2]出现了x(y-1)次……d[h][k]出现了(x-h+1)(y-k+1)次。那么这个式子就可以写成:sum{i=1}^{x}sum{j=1}^{y}d[i][j](x+1-i)(y+1-j) O(log2n)d[h][k]d[1][1]xyd[1][2]x(y1)d[h][k](xh+1)(yk+1)sumi=1xsumj=1yd[i][j](x+1i)(y+1j) 把这个式子展开,就得到:
在这里插入图片描述

那么我们要开四个树状数组,分别维护: d [ i ] [ j ] j , d [ i ] [ j ] i , d [ i ] [ j ] j d[i][j]_j,d[i][j]_i,d[i][j]_{j} d[i][j]j,d[i][j]i,d[i][j]j, d [ i ] [ j ] i j d[i][j]_{ij} d[i][j]ij 这样就完成了!

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
ll read(){
    char c; bool op = 0;
    while((c = getchar()) < '0' || c > '9')
        if(c == '-') op = 1;
    ll res = c - '0';
    while((c = getchar()) >= '0' && c <= '9')
        res = res * 10 + c - '0';
    return op ? -res : res;
}
const int N = 205;
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];
void add(ll x, ll y, ll z){
    for(int X = x; X <= n; X += X & -X)
        for(int Y = y; Y <= m; Y += Y & -Y){
            t1[X][Y] += z;
            t2[X][Y] += z * x;
            t3[X][Y] += z * y;
            t4[X][Y] += z * x * y;
        }
}
void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
    add(xa, ya, z);
    add(xa, yb + 1, -z);
    add(xb + 1, ya, -z);
    add(xb + 1, yb + 1, z);
}
ll ask(ll x, ll y){
    ll res = 0;
    for(int i = x; i; i -= i & -i)
        for(int j = y; j; j -= j & -j)
            res += (x + 1) * (y + 1) * t1[i][j]
                - (y + 1) * t2[i][j]
                - (x + 1) * t3[i][j]
                + t4[i][j];
    return res;
}
ll range_ask(ll xa, ll ya, ll xb, ll yb){
    return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}
int main(){
    n = read(), m = read(), Q = read();
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            ll z = read();
            range_add(i, j, i, j, z);
        }
    }
    while(Q--){
        ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();
        if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))
            range_add(xa, ya, xb, yb, a);
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++)
            printf("%lld ", range_ask(i, j, i, j));
        putchar('\n');
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页