二维前缀和

大雪菜的课(笔记)

基础算法(二)

2.前缀和

(1).二维前缀和
模板(二维前缀和 —— 模板题 AcWing 796. 子矩阵的和)
//S[i, j] = 第i行j列格子左上部分所有元素的和
//1.以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为
s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1];
//2.s[x][y]
s[x][y]=s[x][y-1]+s[x-1][y]-s[x-1][y-1]+a[x][y];
AcWing796. 子矩阵的和

输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式
第一行包含三个整数n,m,q。

接下来n行,每行包含m个整数,表示整数矩阵。

接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。

输出格式
共q行,每行输出一个询问的结果。

数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21

#include <iostream>
using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
	int n,m,q;
	scanf("%d%d%d",&n,&m,&q);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++){
			scanf("%d",&a[i][j]);
			s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
		}
	while(q--){
		int x1,y1,x2,y2;
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		printf("%d\n",s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值