yolo学习记录1

本文介绍了YOLO(You Only Look Once)目标检测算法,它旨在通过一次扫描就能确定图像中物体的位置和类别。YOLO是一种基于回归的技术,不同于分类,它的目标是预测边界框坐标和类别概率,力求接近真实值,而非简单的二元分类。回归旨在拟合函数,而分类则做定性判断。博客深入浅出地解析了这两种方法的区别,并引导读者开始YOLO的学习之旅。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

恒有贵,何必三更起五更眠;
最无益,只怕一日曝十日寒。

从YOLO1开始,让咋们开始 YOLO的学习。

YOLO的目标是看一眼(you look only once)就知道目标的位置和种类,是基于回归的目标检测算法,但,啥是回归啊。

去百度一下,原来,现在火热的神经网络主要分两个目标方向一个是分类,一个便是回归。回归的目标是拟合一个函数,输出的目标是要接近一个函数值,比如要接近3.1415926,而不是0或1的判断。而分类算法的目标,是做出定性的判断,是还是不是这个类,给我个准话(输出0或1进行判断)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值