- 博客(117)
- 收藏
- 关注
原创 【论文翻译】Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting纯翻译
多水平预测通常包含复杂的输入组合——包括静态(即时不变)协变量、已知的未来输入和其他仅在过去观察到的外生时间序列——没有任何关于它们如何与目标相互作用的先验信息。已经提出了几种深度学习方法,但它们都是典型的“黑盒”模型,无法说明它们如何在实际场景中使用各种输入。在本文中,我们介绍了时间融合转换器(TFT)——一种新颖的基于注意力的架构,它将高性能的多水平预测与对时间动态的可解释见解相结合。为了学习不同尺度上的时间关系,TFT使用循环层进行局部处理,使用可解释的自我注意层进行长期依赖。
2023-04-22 14:09:14 1488
原创 Transformer在时序预测的应⽤第一弹——Autoformer
该论文提出了一种名为Autoformer的新深度学习模型,用于对时间序列数据进行长期预测。它使用具有自动关联机制的分解架构来发现和表示子系列级别的依赖关系,从而在涵盖实际应用的六个基准测试上具有最高的准确性。
2023-04-16 14:38:50 5876 4
原创 DocSCAN: Unsupervised Text Classification via Learning from Neighbors
我们介绍了DocSCAN,一种完全无监督的文本分类方法,建立在采用最近邻居算法的语义聚类基础上。对于每个文档,我们从一个预先训练好的大型语言模型中获得语义信息向量。我们发现相似的文档有近似向量,所以表示空间中的邻居倾向于共享主题标签。然后,我们的可学习聚类方法使用相邻数据点对作为弱学习信号来自动学习主题分配。在三个不同的文本分类基准上,我们在各种无监督基准上有了很大的改进。
2023-04-16 14:33:31 508 1
原创 时间序列预测任务PyTorch数据集类——TimeSeriesDataSet 类详解
时间序列预测任务PyTorch数据集类——TimeSeriesDataSet 类详解当进行时间序列预测或时间序列分析时,通常需要对数据进行预处理和转换以提高模型的效果和准确性。TimeSeriesDataSet 类是为这些目的而创建的 PyTorch 数据集类,提供了一些自动化的功能,使得预处理和转换变得更加方便和高效。该类可以用于多种时间序列预测任务,例如预测股票价格、交通流量、能源消耗等。
2023-04-16 13:26:21 5471 2
原创 Kaggle实战Pytorch Forecasting => TemporalFusionTransformer 保姆级0基础代码逐行解析
Using Pytorch Forecasting to train a TemporalFusionTransformer
2023-04-01 23:39:58 2872 4
原创 DCScan: A Power-Aware Scan Testing Architecture
本文提出了一种名为DCScan的新型功率感知扫描架构,该架构将兼容的扫描单元分成多个段,并使用数据复制和转移技术来降低测试功耗、布线开销和响应数据量。实验结果表明,这种方法在ISCAS'89的基准电路上实现低功耗测试和高故障覆盖率方面是有效的。
2023-03-17 00:06:46 521
原创 Mutual Mean-Teaching
该论文提出了一个名为Mutual Mean-Teaching(MMT)的新框架,以改善不同数据集中的人物重新识别。它在无监督域适应任务方面取得了显著改进。
2023-03-16 18:12:10 672
原创 Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings
Towards Unsupervised Text Classification Leveraging Experts and Word Embeddings该论文提出了一种无监督的方法,使用每个文档中相关单词之间的文本相似度以及每个类别的关键字字典将文档分为几类。所提出的方法通过人类专业知识和语言模型丰富了类别标签,为低成本文本分类提供了一种实用的替代方案。
2023-03-16 17:45:56 552
原创 Temporal Fusion Transformer (TFT) 各模块功能和代码解析(pytorch)
Temporal Fusion Transformer (TFT) 各模块功能和代码解析(pytorch)
2023-03-03 00:45:04 5166 5
原创 【论文精读】Benchmarking Deep Learning Interpretability in Time Series Predictions
Benchmarking Deep Learning Interpretability in Time Series Predictions
2023-02-28 22:09:44 3841 4
原创 【nature论文精读】Impedance-based forecasting of lithium-ion battery performance amid uneven usage
【nature论文精读】Impedance-based forecasting of lithium-ion battery performance amid uneven usage
2023-02-22 15:13:55 1034 1
原创 【论文精读】Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
【论文精读】Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
2023-02-10 02:40:28 3705 3
原创 【论文精读】一石二鸟:Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting
时间序列可解释性论文精读 Two Birds with One Stone: Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting
2023-02-08 19:22:21 846 2
原创 深度解析黑白棋AI代码原理(蒙特卡洛搜索树MCTS+Roxanne策略)
深度解析黑白棋AI代码原理(蒙特卡洛搜索树MCTS+Roxanne策略)
2022-04-10 14:33:56 17363
原创 数据库学习笔记第三弹——MySQL常用的图形化管理辅助工具及相关问题(图文详解2022))
数据库学习第三弹——MySQL常用的图形化管理辅助工具(图文详解2022)MySQL图形化管理工具极大地方便了数据库的操作与管理,常用的图形化管理工具有:MySQL Workbench、phpMyAdmin、Navicat Preminum、MySQL Dumper、SQLyog、dbeaver、MySQL ODBC Connector。1.工具1. MySQL WorkbenchMySQL官方提供的图形化管理工具MySQL Workbench完全支持MySQL 5.0以上的版本。MySQL W
2022-04-10 13:43:34 2405
原创 数据库学习笔记第一弹——MySQL8.0和MySQL5.7的下载、安装与配置(图文详解步骤2022)
数据库学习笔记第一弹——MySQL8.0和MySQL5.7的下载、安装与配置
2022-04-06 23:44:50 1068 6
原创 Text-Instance Graph: Exploring the Relational Semantics for Text-based Visual Question Answering
Text-Instance Graph: Exploring the Relational Semantics for Text-based Visual Question Answering
2022-03-02 20:58:44 436 1
原创 轨迹优化问题
本文介绍了用于轨迹优化技术的转录方法。前几节描述了用于将轨迹优化问题转化为一般约束优化形式的两类transcription方法(shooting methods and simultaneous methods.)。报告的中间部分讨论了对基本方法的一些扩展,包括如何处理混合系统(如行走机器人)。最后一节介绍了各种实现细节。
2022-02-28 14:20:47 6460
原创 六万字长文!让你懂透编译原理(七)——第七章 语义分析和中间代码产生
近万字长文!让你懂透编译原理(七)——第七章 语义分析和中间代码产生E→E1op E2E是由两个子表达式通过op运算符连接而成E.code:= E1.code || E2.code ||op那么他的语义说的是,构造好的复杂的表达式后缀形式由op前面的子表达式E1的后缀形式和op后面的子表达式E2的后缀形式这两个后缀形式依次连接,再放上op运算符,这样的出来的就是整个表达式的后缀形式。(E的后缀式是E1的后缀式+E2的后缀式+op)E→ (E1)第二条规则,从语法上看,一个表达
2021-05-13 09:55:53 6692 14
原创 三万五千字长文!让你懂透编译原理(六)——第六章 属性文法和语法制导翻译
近万字长文!让你懂透编译原理(六)——第六章 属性文法和语法制导翻译6.1 属性文法属性文法(也称属性翻译文法)Knuth在1968年提出以上下文无关文法为基础为每个文法符号(终结符或非终结符)配备若干相关的“值”(称为属性)。属性代表与文法符号相关信息,如类型、值、代码序列、符号表内容等属性可以进行计算和传递语义规则:对于文法的每个产生式都配备了一组属性的计算规则,对属性进行计算和传递。属性综合属性:“自下而上”传递信息继承属性:“自上而下”传递信息综
2021-05-10 17:38:06 3201 6
原创 【大数据学习知识点总结】关于Hadoop|HDFS|MapReduce的一些问题与解答
关于Hadoop|HDFS|MapReduce的一些问题与解答
2021-05-05 23:36:08 5270 8
原创 MapReduce之WordCount实战——统计某电商网站买家收藏商品数量
现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“\t”分割。要求编写MapReduce程序,统计每个买家收藏商品数量,并撰写实验报告。
2021-05-05 22:56:43 5647 2
原创 MapReduce入门(一)—— MapReduce概述 + WordCount案例实操
MapReduce入门(一)—— MapReduce概述MapReduce知识点总览图MapReduce入门(一)—— MapReduce 概述1.1 MapReduce 定义MapReduce 是一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析应用”的核心框架。MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个 Hadoop 集群上。1.2 MapReduce 优缺点1.2.1 优点1
2021-05-05 22:55:49 24248 11
原创 图文详解步骤——JDK的卸载与安装(慎重下载高版本JDK!强烈建议要安装就安装JDK8)
找到环境变量原先的jdk目录二、配置环节9. 选中桌面”我的电脑”-右键选择属性,选择高级系统设置。10. 点击环境变量:新建一项系统变量“JAVA_HOME”,值为 jdk 的安装路径。配置系统变量:双击系统变量的 path,在变量值最前端添加%JAVA_HOME%\bin; 然后确定-确定检验是否配置成功:通过运行-cmd 指令,进入命令行窗口。输入:javac.exe检验 java.exe 命令获取当前安装的 jdk 的版本信息
2021-05-05 19:57:06 1706 5
原创 HDFS入门(六)—— DataNode(图文详解步骤2021)
HDFS入门(六)—— DataNode(图文详解步骤2021)文章目录HDFS入门(六)—— DataNode(图文详解步骤2021)6.1 DataNode 工作机制6.2 数据 完整性数据完整性6.3 DataNode掉线时限参数设置6.1 DataNode 工作机制(1)一个数据块在 DataNode 上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。(2)DataNode 启动后向 NameNode 注册,通过后,
2021-05-04 21:41:50 3181 5
原创 HDFS入门(四)—— HDFS的读写流程(图文详解步骤2021)
HDFS入门(四)—— HDFS的读写流程(图文详解步骤2021)文章目录HDFS入门(四)—— HDFS的读写流程(图文详解步骤2021)4.1 HDFS 写数据流程4.1.1 剖析文件 写入4.1.2 网络拓扑- 节点 距离计算4.1.3 机架 感知 (副本 存储 节点 选择)1 )机架感知说明2 )Hadoop3.1.3 副本节点选择4.2 HDFS 读数据流程4.1 HDFS 写数据流程4.1.1 剖析文件 写入借用尚硅谷的一个架构图:(1)客户端通过 Distribu
2021-05-04 21:18:21 3949 12
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人