23.9.27 吴恩达深度学习编程作业——卷积神经网络作业3 (YOLO原理-车辆检测)注意事项

23.9.27 吴恩达深度学习编程作业——卷积神经网络作业3 (YOLO原理-车辆检测)注意事项


注意事项 :

1.吴恩达老师的代码过于老旧,因此需要降低tensorflow的版本为1.x的,相应的numpy和keras等包都需要降低版本

为了与本地的python环境区分开来,我在anaconda中重新建立了python3.6.2的环境NG_DeeoLearning:
在这里插入图片描述以下是降低完版本之后的一些packages的版本:箭头指出了这个作业需要用到的主要的包,后面是它对应的版本。
注意,在anaconda里面下载的时候,我使用的conda install xxx来进行下载的,而不是pip install xxx
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.anaconda虚拟环境python3.6.2的jupyter的工作目录和本地的python3.11的jupyter工作目录不是同一个地方

1)首先看下如何激活特定的虚拟环境:
conda activate NG_DeepLearning(虚拟环境名字)
2)然后看下如何在某虚拟环境中启动特定工作目录的juyter notebook
jupyter notebook --notebook-dir F:\A_yan_learning\jupyter_xuni_yan1 (是虚拟环境的工作目录的路径)

在这里插入图片描述
在这里插入图片描述

3) 注意路径一定要全英文,否则在读取.h5文件的时候就会出现utf-8的错误!
4)完毕,可以在此环境下使用何宽大佬的代码啦

3.anaconda的一些常用命令

  • conda list 查看安装了哪些包。

  • conda env list 或 conda info -e 查看当前存在哪些虚拟环境

  • conda update conda 检查更新当前conda

  • conda --version 查询conda版本

  • conda -h 查询conda的命令使用

  • conda info --envs 查看每个虚拟环境安装的位置

  • jupyter notebook --notebook-dir F:\A_yan_learning\jupyter_xuni_yan1 在虚拟环境中,anaconda指定工作目录,避免跟本地的python发生冲突

4.代码中的一些查询命令

  • 返回 Python 解释器的绝对路径,这意味着它指向您当前正在使用的 Python 解释器的位置

    import sys
    sys.executable  
    
  • 输出当前笔记保存的位置

    import os
    current_directory = os.getcwd()
    print(current_directory)
    
  • 输出tensorflow的版本和位置

    import tensorflow as tf
    print(tf.__file__)
    print("tensorflow的版本:",tf.__version__)
    
  • 输出keras的版本和位置

    - import keras
      print(keras.__file__)
      print("keras的版本:",keras.__version__)
      print("可以看到当前的tensorflow与keras都是在虚拟环境NG_DeepLearning中创建的!")
    
  • 显示gif图像

from IPython.display import Image, display

# 定义GIF图像的文件路径

gif_path = './image_gif_myself/vehicle1.gif'  # 替换为您的GIF图像文件路径

# 使用Image和display函数显示GIF图像

display(Image(filename=gif_path))


  • markdown模式下写这个也可以显示gif图像

    <img src="./image_gif_myself/vehicle1.gif" alt="GIF Image">
    
  • 显示文件的信息

    class_names = yolo_utils.read_classes("model_data/coco_classes.txt")#读取类别名称
    anchors = yolo_utils.read_anchors("model_data/yolo_anchors.txt")#读取锚框信息
    image_shape = (720.,1280.)#定义了输入图像的形状 
    #在对象检测任务中,通常需要指定输入图像的大小,以便模型能够正确地处理图像。
    
    #查看类别名称和锚框
    
    #查看类别名称
    with open("model_data/coco_classes.txt", "r") as file:
       file_contents = file.read()
    
    #显示文件内容
    print("80个类别名称:")
    print(file_contents)
    
    #查看锚框
    with open("model_data/yolo_anchors.txt", "r") as file:
       file_contents = file.read()
    
    print("5个锚框的宽度和高度是:")
    print(file_contents)
    

在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值