一、系统架构设计
class AIPaperAssistant:
def __init__(self):
self.llm = HuggingFacePipeline(pipeline="text-generation") # 大模型核心
self.knowledge_graph = Neo4jDatabase() # 知识图谱存储
self.pdf_processor = PDFAnalyzer() # PDF解析模块
self.data_visualizer = MatplotlibEngine() # 可视化引擎
def workflow(self, research_topic):
# 完整工作流控制
self.idea_generation(research_topic)
self.literature_review()
self.methodology_design()
self.result_analysis()
二、智能论文构思系统
1. 创新点挖掘算法
from transformers import pipeline
def generate_research_ideas(topic):
generator = pipeline('text-generation',
model='gpt2-xl',
device=0) # GPU加速
prompt = f"""基于以下研究主题,生成5个创新研究方向:
主题:{topic}
要求:
1. 结合近三年顶会论文趋势
2. 突出技术交叉创新
3. 标注可行性星级(★数量)"""
return generator(prompt, max_length=500, num_return_sequences=3)
2. 技术路线可视化
import networkx as nx
import matplotlib.pyplot as plt
def create_methodology_graph(ideas):
G = nx.DiGraph()
for i, idea in enumerate(ideas):
G.add_node(f"核心技术{i}", size=500)
G.add_node(f"数据集{i}", size=300)
G.add_edges_from([(f"核心技术{i}