全流程AI论文辅助系统开发实战:从构思到文献增值的智能进化

一、系统架构设计

class AIPaperAssistant:
    def __init__(self):
        self.llm = HuggingFacePipeline(pipeline="text-generation")  # 大模型核心
        self.knowledge_graph = Neo4jDatabase()  # 知识图谱存储
        self.pdf_processor = PDFAnalyzer()      # PDF解析模块
        self.data_visualizer = MatplotlibEngine()  # 可视化引擎
        
    def workflow(self, research_topic):
        # 完整工作流控制
        self.idea_generation(research_topic)
        self.literature_review()
        self.methodology_design()
        self.result_analysis()

二、智能论文构思系统

1. 创新点挖掘算法

from transformers import pipeline

def generate_research_ideas(topic):
    generator = pipeline('text-generation', 
                       model='gpt2-xl',
                       device=0)  # GPU加速
    
    prompt = f"""基于以下研究主题,生成5个创新研究方向:
主题:{topic}
要求:
1. 结合近三年顶会论文趋势
2. 突出技术交叉创新
3. 标注可行性星级(★数量)"""
    
    return generator(prompt, max_length=500, num_return_sequences=3)

2. 技术路线可视化

import networkx as nx
import matplotlib.pyplot as plt

def create_methodology_graph(ideas):
    G = nx.DiGraph()
    for i, idea in enumerate(ideas):
        G.add_node(f"核心技术{i}", size=500)
        G.add_node(f"数据集{i}", size=300)
        G.add_edges_from([(f"核心技术{i}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏末之花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值