A_Coding_man
码龄5年
关注
提问 私信
  • 博客:69,246
    69,246
    总访问量
  • 64
    原创
  • 2,191,817
    排名
  • 89
    粉丝
  • 0
    铁粉

个人简介:纵有疾风起 人生不言弃

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-04-02
博客简介:

A_Coding_Man

查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得12次评论
  • 获得244次收藏
  • 代码片获得611次分享
创作历程
  • 1篇
    2022年
  • 48篇
    2021年
  • 20篇
    2020年
成就勋章
TA的专栏
  • 学习进度 + 个人提升
    3篇
  • 林克捷云
  • Python
    21篇
  • 数据处理
    2篇
  • OpenCV
    8篇
  • SQL
    6篇
  • LeetCode
    3篇
  • Web后端
    5篇
  • Pandas
    3篇
  • 数据结构
    2篇
  • Linux
    4篇
  • 深度学习
    5篇
  • TensorFlow
    9篇
  • 机器学习
  • 爬虫
  • Git
    1篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

TX2刷机 JetPack4.4

TX2刷机 JetPack4.4 教程,狗都看得懂
原创
发布博客 2022.10.24 ·
2217 阅读 ·
1 点赞 ·
1 评论 ·
9 收藏

《有本事》冯唐

有本事修炼本事本事的含义本事才有得选尽人力 天意随怕什么就做什么埋首做事 笑脸迎人生而为人 用好肉身把一辈子当成一天过站直不哭愿生命灿夏花 愿死亡美如秋叶让人生变得有聊一点自己的事情自己做,不给别人添麻烦起居有常 饮食有度 远离妄念小宇宙强大高于一切修炼本事持续修炼自己最能够安身立命的本事得志行天下不得志独善其身淡定而从容本事的含义一个人有本事才是靠得住的财富本事才有得选你可以不屠龙但不能不磨剑尽人力 天意随怕什么就做什么埋首做事 笑脸迎人生而为人 用好肉身把一辈子当成
原创
发布博客 2021.10.24 ·
1789 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

OpenCV VideoCapture.get()参数详解

OpenCV VideoCapture.get()参数详解编号1详细参数释义英文说明cv2.VideoCapture.get(0)CV_CAP_PROP_POS_MSEC视频文件的当前位置(播放)以毫秒为单位Current position of the video file in milliseconds or video capture timestamp.cv2.VideoCapture.get(1)CV_CAP_PROP_POS_FRAMES基于以0开始的被
原创
发布博客 2021.09.06 ·
616 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

matplotlib绘制mqtt数据实时图像

实时绘制mqtt数据图像import jsonimport mathimport randomfrom paho.mqtt import client as mqtt_clientimport timeimport datetimefrom math import ceil, floorimport matplotlib.pyplot as pltimport geventimport _thread# 公共变量broker = 'broker.emqx.io'topic = "
原创
发布博客 2021.09.03 ·
729 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

yield的使用

有 return 的函数直接返回所有的结果,程序终止不再运行,并销毁局部变量def example(): x = 1 return xexample = example()print(example)# 1而有 yield 的函数则返回一个可迭代的 generator(生成器)对象,可以使用 for 循环或者调用 next() 方法遍历生成器对象来提取结果def fab(max): """生成斐波那契数列""" n, a, b = 0, 0, 1 w
原创
发布博客 2021.08.23 ·
84 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【tf2函数】tf.random_normal()

tf.random_normal()tf.random_normal()函数用于从“服从指定正态分布的序列”中随机取出指定个数的值。tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)- shape: 输出张量的形状,必选- mean: 正态分布的均值,默认为0- stddev: 正态分布的标准差,默认为1.0- dtype: 输出的类型,默认为tf.float32- seed
原创
发布博客 2021.08.23 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【tf2函数】tf.gather()

传送门tf.gather():tf.gather() 单一维度方向的数据,进行任意顺序的切片。源张量是一维数据代码:import tensorflow as tfprint("源张量")a = tf.constant([0,1,2,3,4,5,6,7,8,9])print(a) b = tf.gather(a, indices=[0,2,4,6,8,1,3,5,7,9])print(b) b = tf.gather(a, indices=[0,2,4])print(b
原创
发布博客 2021.08.23 ·
289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

random.shuffle(lst)

random.shuffle(lst) 函数将输入的列表lst随机打乱,会将原序列打乱import randomlst = ['PEK', 28, 'Li Bai', 'Tsinghua']random.shuffle(lst)print(lst)# ['Tsinghua', 28, 'Li Bai', 'PEK']
原创
发布博客 2021.08.23 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动手学深度学习(TF2 版)_第3章 深度学习基础 ---- 3.2 线性回归的从零开始实现

3.1 线性回归的从零开始实现3.2 线性回归的从零开始实现3.2.1 生成数据集3.2.2 读取数据3.2.5 定义损失函数3.2.6 定义优化算法3.2.7 训练模型3.2 线性回归的从零开始实现在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用Tensor和GradientTape来实现一个线性回归的训练。首先,导入本节中实验所需的包或模块,其中的
转载
发布博客 2021.08.21 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2. 【中等】两数相加

2. 两数相加给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0 开头。示例 1:输入:l1 = [2,4,3], l2 = [5,6,4]输出:[7,0,8]解释:342 + 465 = 807.示例2:输入:l1 = [0], l2 = [0]输出:[0]示例 3:输入:l1 = [9,9,9,9,9,9,9
原创
发布博客 2021.08.19 ·
95 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

random.shuffle() 函数

Python random.shuffle() 函数将列表中的元素随机打乱该方法会修改原序列import randomlst = ['LiBai', 57, 'BaiJuyi', 12]random.shuffle(lst)print(lst)# [12, 'LiBai', 'BaiJuyi', 57]
原创
发布博客 2021.08.18 ·
462 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动手学深度学习(TF2 版)_第3章 深度学习基础 ---- 3.1 线性回归

转载:本节原书传送门3.1 线性回归线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax 回归则适用于分类问题。由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深度学习模型。我们首先以线性回归为例,介绍大多数深度学习模型的基本要素和表示方法。3.1.
转载
发布博客 2021.08.18 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动手学深度学习(TF2 版)_第2章 预备知识

import tensorflow as tfprint(tf.__version__)# 2.4.0################################## 2.2.1 创建tensor#################################""" 先介绍tensor的最基本功能,我们用range函数创建一个行向量。"""x = tf.constant(range(12))print(x.shape)# (12,)# 一个tensor实例,其中包.
转载
发布博客 2021.08.17 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flask 学习

第一章 准备工作虚拟环境虚拟环境是独立于Python全局环境的解释器环境,使用它的好处如下:保持全局环境的干净指定不同的依赖版本方便记录和管理依赖创建虚拟环境使用 python3 内置的 venv 模块陈创建虚拟环境python -m venv your_env_name启动虚拟环境env\Scripts\activate # Windows. env\bin\activate # MacOS 或 Linux退出虚拟环境deactivate激活虚拟环境之后安装F
原创
发布博客 2021.08.16 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号滤波器

滤波def high_pass_filtering(data): """高通滤波器""" b, a = signal.butter(8, 0.02, 'highpass') filtedData = signal.filtfilt(b, a, data) # data为要过滤的信号 return filtedDatadef band_pass_filtering(data): """带通滤波器""" b, a = signal.butter(8, [
原创
发布博客 2021.08.03 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CSDN专栏的图标

CSDN专栏的图标机器学习数据处理TensorflowDeepLearningRaspberry Pi笔记爬虫Web后端GitPythonSQLPandas数据结构OpenCVLeetCodeLinux
原创
发布博客 2021.08.02 ·
713 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CPTbed-01 猫狗识别

01-第一个人工智能程序导入相关库# numpy 用来进行向量化import numpy as np# matplotlib 用来画图的import matplotlib.pyplot as plt# h5py 用来加载训练数据集的。# 我们数据集的保存格式是HDF。Hierarchical Data Format(HDF)是一种针对大量# 数据进行组织和存储的文件格式,大数据行业和人工智能行业都用它来保存数据。import h5py# skimage 用来缩放图片impor
原创
发布博客 2021.08.01 ·
461 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【树莓派4B-02】安装 tensorflow2.4

Raspberry4B安装tensorflow2.4SD卡格式化刷入Raspberry的Ubuntu20.04LTS系统入网及连接配置wifi连接Raspberry安装宝塔面板conda创建新环境tensorflow 2.4SD卡格式化我的SD卡之前时装有Ubuntu系统的,将SD卡链接到电脑之后,只显示一个盘符,双击时显示需要格式化。格式化方法:此电脑–管理–磁盘管理,找到SD卡。左击选中system-boot,点击删除卷;主分区操作相同。完成上一步后,SD卡显示“59.48GB
原创
发布博客 2021.07.22 ·
1262 阅读 ·
3 点赞 ·
3 评论 ·
15 收藏

深度学习基础

深度学习深度学习基础深度学习基础逻辑回归(简单):z=dot(w,x)+bz = dot(w,x) + bz=dot(w,x)+bsigmoid激活函数∂(z)=11+e−z\partial(z)=\frac {1}{1+e^{-z}} ∂(z)=1+e−z1​sigmoid求导:y=11+e−xy = \frac {1}{1+e^{-x}}y=1+e−x1​       yx′=[(1+e−x)−1]′\space
原创
发布博客 2021.07.12 ·
167 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关键20小时--快速学会任何技能

关键20小时--快速学会任何技能方法鸡汤方法快速习得技能:分解步骤:把技能做最大程度的细分,分成若干小步骤。充分学习:对每个小步骤进行充分学习,以便进行灵活的练习,并在练习中自我纠正。克服困难:克服在练习中出现的生理、心理或者情绪上的障碍。集中练习:至少用20小时集中学习最重要的小步骤。说白了就是“找出方法–勤加练习–注意细节”鸡汤生命中那些让你感到有价值的事,往往需要你掌握某种程度的技巧,而掌握技巧又需要付出时间和努力。然而,时间,我们似乎没有;努力,我们似乎不愿付出。我们宁愿
原创
发布博客 2021.06.27 ·
557 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多