基于遗传算法的静态外卖骑手路径规划及matlab实现

675 篇文章 362 订阅 ¥59.90 ¥99.00
本文探讨了使用遗传算法解决外卖骑手静态路径规划问题,通过MATLAB实现寻找最短行驶路程的优化方法。文章详细介绍了遗传算法的步骤,包括选择、交叉、变异操作,并提供了MATLAB代码示例。
摘要由CSDN通过智能技术生成

基于遗传算法的静态外卖骑手路径规划及matlab实现

在大城市中,随着外卖市场的不断扩大,外卖配送已成为人们日常生活中不可或缺的服务。然而,如何优化外卖骑手的配送路径成为了一个重要的问题。本文将介绍一种利用遗传算法求解静态外卖骑手路径规划的方法,并给出了相应的matlab实现代码。

一、问题描述

考虑一个简单模型:一个外卖配送点A,若干个待配送地点B1、B2、…、Bn,在每个待配送地点处所需时间相同,且外卖骑手从A出发后须回到A。问题是如何确定一个最优的路径使得外卖骑手的总行驶路程最短。

二、遗传算法

遗传算法是一种模拟自然进化过程的搜索算法,它通过对个体的遗传操作来达到寻找最优解的目的。在本问题中,我们可以将每一个路径看作一个个体,通过遗传算法来对个体进行优化。

具体地,我们用一条长度为n的序列表示骑手经过待配送地点的顺序,即[1,2,…,n]。对于每一个个体,我们首先将序列打乱得到一个随机解,并计算该路径的总行驶路程。然后,通过交叉、变异等遗传操作来不断优化路径,直到达到最优解。

具体的遗传操作如下:

1.选择操作:根据适应度函数对种群进行选择,选择优秀个体用于繁殖下一代。

2.交叉操作:从父代中选出两个个体,通过某种方式将它们的基因进行交叉得到新的个体。

3.变异操作:在某些情况下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值