Spark笔记

Transformation操作

flatMap

 // TODO 算子 - flatMap
val rdd = sc.makeRDD(List(List(1,2),3,List(4,5)))
        val flatRDD = rdd.flatMap(
            data => {
                data match {
                    case list:List[_] => list
                    case dat => List(dat)
                }
            }
        )
        flatRDD.collect().foreach(println)

glom

// TODO 算子 - glom
        val rdd : RDD[Int] = sc.makeRDD(List(1,2,3,4), 2)

        // List => Int
        // Int => Array
        val glomRDD: RDD[Array[Int]] = rdd.glom()

        glomRDD.collect().foreach(data=> println(data.mkString(",")))
        
// TODO 算子 - glom
        val rdd : RDD[Int] = sc.makeRDD(List(1,2,3,4), 2)

        // 【1,2】,【3,4】
        // 【2】,【4】
        // 【6】
        val glomRDD: RDD[Array[Int]] = rdd.glom()

        val maxRDD: RDD[Int] = glomRDD.map(
            array => {
                array.max
            }
        )
        println(maxRDD.collect().sum)


groupby

// TODO 算子 - groupBy
        val rdd : RDD[Int] = sc.makeRDD(List(1,2,3,4), 2)

        // groupBy会将数据源中的每一个数据进行分组判断,根据返回的分组key进行分组
        // 相同的key值的数据会放置在一个组中
        def groupFunction(num:Int) = {
            num % 2
        }
        val groupRDD: RDD[(Int, Iterable[Int])] = rdd.groupBy(groupFunction)

        groupRDD.collect().foreach(println)

// TODO 算子 - groupBy
        val rdd  = sc.makeRDD(List("Hello", "Spark", "Scala", "Hadoop"), 2)

        // 分组和分区没有必然的关系
        val groupRDD = rdd.groupBy(_.charAt(0))

        groupRDD.collect().foreach(println)


// TODO 算子 - groupBy
        val rdd = sc.textFile("datas/apache.log")

        val timeRDD: RDD[(String, Iterable[(String, Int)])] = rdd.map(
            line => {
                val datas = line.split(" ")
                val time = datas(3)
                //time.substring(0, )
                val sdf = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss")
                val date: Date = sdf.parse(time)
                val sdf1 = new SimpleDateFormat("HH")
                val hour: String = sdf1.format(date)
                (hour, 1)
            }
        ).groupBy(_._1)
        timeRDD.map{
            case ( hour, iter ) => {
                (hour, iter.size)
            }
        }.collect.foreach(println)

distinct

// TODO 算子 - distinct
        val rdd = sc.makeRDD(List(1,2,3,4,1,2,3,4))
        val rdd1: RDD[Int] = rdd.distinct()
        rdd1.collect().foreach(println)

sortBy

// TODO 算子 - sortBy
        val rdd = sc.makeRDD(List(6,2,4,5,3,1), 2)

        val newRDD: RDD[Int] = rdd.sortBy(num=>num) //按照num排序

        newRDD.saveAsTextFile("output")

// TODO 算子 - sortBy
        val rdd = sc.makeRDD(List(("1", 1), ("11", 2), ("2", 3)), 2)
        // sortBy方法可以根据指定的规则对数据源中的数据进行排序,默认为升序,第二个参数可以改变排序的方式
        // sortBy默认情况下,不会改变分区。但是中间存在shuffle操作
        val newRDD = rdd.sortBy(t=>t._1.toInt, false) //拿元组第一个来排,这里把字符串转为数字来排

        newRDD.collect().foreach(println)

双Value类型

// TODO 算子 - 双Value类型

        // 交集,并集和差集要求两个数据源数据类型保持一致
        // 拉链操作两个数据源的类型可以不一致
        
        val rdd1 = sc.makeRDD(List(1,2,3,4))
        val rdd2 = sc.makeRDD(List(3,4,5,6))
        val rdd7 = sc.makeRDD(List("3","4","5","6"))

        // 交集 : 【3,4】
        val rdd3: RDD[Int] = rdd1.intersection(rdd2)
        //val rdd8 = rdd1.intersection(rdd7)
        println(rdd3.collect().mkString(","))

        // 并集 : 【1,2,3,4,3,4,5,6】
        val rdd4: RDD[Int] = rdd1.union(rdd2)
        println(rdd4.collect().mkString(","))

        // 差集 : 【1,2】
        val rdd5: RDD[Int] = rdd1.subtract(rdd2)
        println(rdd5.collect().mkString(","))

        // 拉链 : 【1-3,2-4,3-5,4-6】
        val rdd6: RDD[(Int, Int)] = rdd1.zip(rdd2)
        val rdd8 = rdd1.zip(rdd7)
        println(rdd6.collect().mkString(","))

(Key - Value类型)

reduceByKey

// TODO 算子 - (Key - Value类型)
        val rdd = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("a", 3), ("b", 4)
        ))
        // reduceByKey : 相同的key的数据进行value数据的聚合操作
        // scala语言中一般的聚合操作都是两两聚合,spark基于scala开发的,所以它的聚合也是两两聚合
        // 【1,2,3】
        // 【3,3】
        // 【6】
        // reduceByKey中如果key的数据只有一个,是不会参与运算的。
        val reduceRDD: RDD[(String, Int)] = rdd.reduceByKey( (x:Int, y:Int) => {
            println(s"x = ${x}, y = ${y}")
            x + y
        } )
        reduceRDD.collect().foreach(println)

groupByKey

// TODO 算子 - (Key - Value类型)
        val rdd = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("a", 3), ("b", 4)
        ))
        // groupByKey : 将数据源中的数据,相同key的数据分在一个组中,形成一个对偶元组
        //              元组中的第一个元素就是key,
        //              元组中的第二个元素就是相同key的value的集合
        val groupRDD: RDD[(String, Iterable[Int])] = rdd.groupByKey()

        groupRDD.collect().foreach(println)

        val groupRDD1: RDD[(String, Iterable[(String, Int)])] = rdd.groupBy(_._1)

join

// TODO 算子 - (Key - Value类型)

        val rdd1 = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("c", 3)
        ))
        val rdd2 = sc.makeRDD(List(
            ("a", 5), ("c", 6),("a", 4)
        ))

        // join : 两个不同数据源的数据,相同的key的value会连接在一起,形成元组
        //        如果两个数据源中key没有匹配上,那么数据不会出现在结果中
        //        如果两个数据源中key有多个相同的,会依次匹配,可能会出现笛卡尔乘积,数据量会几何性增长,会导致性能降低。
        val joinRDD: RDD[(String, (Int, Int))] = rdd1.join(rdd2)

        joinRDD.collect().foreach(println)

(a,(1,5))
(a,(1,4))
(a,(2,5))
(a,(2,4))
(c,(3,6))

leftjoin rightjoin

// TODO 算子 - (Key - Value类型)

        val rdd1 = sc.makeRDD(List(
            ("a", 1), ("b", 2)//, ("c", 3)
        ))

        val rdd2 = sc.makeRDD(List(
            ("a", 4), ("b", 5),("c", 6)
        ))
        //val leftJoinRDD = rdd1.leftOuterJoin(rdd2)
        val rightJoinRDD = rdd1.rightOuterJoin(rdd2)

        //leftJoinRDD.collect().foreach(println)
        rightJoinRDD.collect().foreach(println)

cogroup

// TODO 算子 - (Key - Value类型)

        val rdd1 = sc.makeRDD(List(
            ("a", 1), ("b", 2)//, ("c", 3)
        ))

        val rdd2 = sc.makeRDD(List(
            ("a", 4), ("b", 5),("c", 6),("c", 7)  //同一个数据源内部先group,然后不同数据源再进行连接
        ))

        // cogroup : connect + group (分组,连接)
        val cgRDD: RDD[(String, (Iterable[Int], Iterable[Int]))] = rdd1.cogroup(rdd2)

        cgRDD.collect().foreach(println)
//        (a,(CompactBuffer(1),CompactBuffer(4)))
//        (b,(CompactBuffer(2),CompactBuffer(5)))
//        (c,(CompactBuffer(),CompactBuffer(6, 7)))

Action操作

countByKey, countByValues

//val rdd = sc.makeRDD(List(1,1,1,4),2)
        val rdd = sc.makeRDD(List(
            ("a", 1),("a", 2),("a", 3)
        ))

        // TODO - 行动算子

       //val intToLong: collection.Map[Int, Long] = rdd.countByValue() //统计每个value出现的次数
        //println(intToLong)
        val stringToLong: collection.Map[String, Long] = rdd.countByKey()  //统计每个key出现的次数
        println(stringToLong) //因为是map,所以可以直接println

//wordcount
// countByKey
    def wordcount7(sc : SparkContext): Unit = {
        val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
        val words = rdd.flatMap(_.split(" "))
        val wordOne = words.map((_,1))
        val wordCount: collection.Map[String, Long] = wordOne.countByKey()
    }

    // countByValue
    def wordcount8(sc : SparkContext): Unit = {
        val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
        val words = rdd.flatMap(_.split(" "))
        val wordCount: collection.Map[String, Long] = words.countByValue()
    }

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark SQL是Spark中用于处理结构化数据的模块。它提供了一种基于DataFrame和SQL的编程接口,可以方便地进行数据分析和处理。Spark SQL支持多种数据源,包括Hive、JSON、Parquet等,可以通过SQL语句或DataFrame API进行数据查询和操作。Spark SQL还支持用户自定义函数(UDF)和聚合函数(UDAF),可以满足更复杂的数据处理需求。Spark SQL的优势在于它可以与Spark的其他模块无缝集成,如Spark Streaming、MLlib等,可以构建完整的数据处理和分析流程。 ### 回答2: 本篇笔记主要是介绍Spark SQL的基本概念和编程模型。 Spark SQL是面向Spark计算引擎的一种高性能的分布式数据处理技术,它提供一种基本的高度抽象的编程模型,使得开发大规模的数据仓库和数据分析应用变得容易和高效。 Spark SQL最核心的概念就是DataFrames,DataFrame是RDD的超集,提供了更高层次的抽象和对数据的结构化的处理能力,在数据处理的过程中常常会用到一些基本的操作:过滤、选择、聚合、排序等等,而这些操作都可以一步一步地以DataFrame为基础完成。 在使用Spark SQL的过程中,可以通过DataFrame API和Spark SQL语言两种方式进行编程。DataFrame API是Spark SQL提供的一种编程API,它提供了常见的操作,如选择、过滤和聚合等。而Spark SQL语言则是一种基于SQL的编程语言,和传统的SQL查询语言类似,可以通过SQL查询语句来对数据进行查询和操作。Spark SQL可以支持多种数据源,包括JSON、Parquet、ORC、Hive、JDBC等等,因此可以轻松地读取和处理不同类型的数据源。 Spark SQL还提供了高级的功能,如User-Defined Functions(UDFs)、Window Functions和Structured Streaming等等。UDFs允许开发者自定义函数并在Spark SQL中使用,将SQL和代码结合起来,提高了处理数据的灵活性和可扩展性;Window Functions则是一种用来进行滑动窗口操作的函数,常常用于计算数据的局部或全局统计量;Structured Streaming提供了数据流处理的能力,并且实现了端到端的Exactly-Once语义。 总之,Spark SQL提供了很多的功能和便利,特别是在大数据处理和分析领域,它的优势尤为突出。结合Spark的强大计算能力和Spark SQL的抽象编程模型,在大规模的数据分析和仓库方面都具有非常高的可扩展性和灵活性。 ### 回答3: Spark SQL是Spark生态系统中的一个组件,它负责处理结构化数据。它提供了SQL查询和DataFrame API,可以从不同的数据源中读取和处理数据。Spark SQL能够理解SQL语言,这使得开发人员可以使用传统的SQL查询方式来处理数据,同时还可以利用Spark的优势,例如分布式计算和内存缓存。 Spark SQL支持许多不同类型的数据源,包括Hive表、传统的RDD、Parquet文件、JSON文件、CSV文件和JDBC数据源等。Spark SQL可以通过使用数据源API将这些数据源加载到Spark中,然后可以在Spark中处理和查询这些数据。 Spark SQL还支持特定于数据源的优化器和执行引擎,这允许Spark SQL针对不同的数据源执行优化操作。例如,使用Hive数据源时,Spark SQL会使用Hive的元数据来优化查询计划。当使用Parquet文件格式时,Spark SQL会使用Parquet文件中的元数据来优化查询计划。 在Spark SQL中,DataFrame是一种非常重要的概念。它是一种强类型的分布式数据集,可以使用DataFrame API进行操作。DataFrame API是一种更面向数据的API,例如过滤数据、聚合数据等。Spark SQL中的DataFrame可以看作是类似于表的对象,它可以和Spark SQL中的SQL查询混合使用。 除了DataFrame API和SQL查询,Spark SQL还支持UDF(用户自定义函数)。UDF允许用户在SQL查询或DataFrame API中定义自己的函数,以实现更复杂的数据操作。使用UDF时,用户可以使用累加器和广播变量等Spark的分布式计算功能,使得UDF具备高性能和可伸缩性。 总之,Spark SQL是大数据处理领域中一种非常方便和强大的处理结构化数据的工具。它可以方便地与其他Spark组件结合使用,例如Spark Streaming、Spark MLlib等。使用Spark SQL,开发人员可以在不同的数据源之间轻松地查询和转换数据,并利用Spark分布式计算的优势,实现高性能和可伸缩性的数据处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值