【大数据之路】数据模型篇 《一》 大数据领域建模综述 【搬运小结】

本文概述了大数据领域建模的重要性,对比了关系数据库系统与数据仓库的区别,探讨了OLTP和OLAP系统的建模方法论。重点介绍了ER模型和维度模型,包括它们的特点、实施步骤及在阿里巴巴数据仓库实践中的应用和发展。
摘要由CSDN通过智能技术生成

数据模型篇 《一》 大数据领域建模综述

1.为什么需要数据建模

数据爆发式增长,我们需要将数据进行有序、有结构地分类组织和存储。
数据模型就是数据组织和存储方法,它强调从业务、数据存取和使
用角度合理存储数据。

有了适合业务和基础数据存储环境的模型,那么大数据就能获得以下好处。

好处 好处
性能 良好的数据模型能帮助我们快速查询所需要的数据,减少数据的吞吐。
成本 良好的数据模型能极大地减少不必要的数据冗余,也能实现计算结果复用, 极大地降低大数据系统中的存储和计算成本。
效率 良好的数据模型能极大地改善用户使用数据的体验,提高使用数据的效率。
质量 良好的数据模型能改善数据统计口径的不一致性,减少数据计算错误的可能性

2.关系数据库系统和数据仓库

随着一大批大型关系数据库商业软件(如Oracle、Informix、DB2等)的兴起,现代企业信息系统几乎都使用关系数据库来存储、加工和处理数据。数据仓库系统也不例外。

NOSQL技术也曾流行一时,但是不管是Hadoop、spark还是阿里巴巴集团的MaxCompute系统,仍然在大规模使用SQL进行数据的加工和处理,仍然在用Table存储数据,仍然在使用关系理论描述数据之间的关系,只是在大数据领域,基于其数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值