在MATLAB中使用tensorflow
下面的代码演示了如何在matlab中使用tensorflow建立神经网络,进行前向运算和反向更新。
clear
clc
%导入tensorflow和numpy
tf = py.importlib.import_module("tensorflow");
np = py.importlib.import_module("numpy");
%每次运行代码时,重新画图
tf.reset_default_graph();
%定义超参数
n_states = 3; %神经网络的输入
n_actions = 5; %神经网络的输出
n_l1 = 10; %隐藏层神经元的个数
batch_size = 2; %批处理的数据
%定义tensor
tf_obs = tf.placeholder(tf.float32,pyargs('shape',[batch_size,n_states],'name','observations')); %输入
q_target = tf.placeholder(tf.float32, pyargs('shape',[batch_size,n_actions], 'name','Q_target')); %标签
% 初始化神经网络参数
w_initializer = tf.random_normal_initializer(0,0.3);
b_initializer = tf.constant_initializer(0.1);
%构建第一层网络
w1 = tf.get_variable('w_1', [n_states, n_l1], pyargs('initializer',w_initializer));
b1 = tf.get_variable('b_1', [1, n_l1], pyargs('initializer',b_initializer));
l1 = tf.nn.relu(tf.matmul(tf_obs, w1) + b1);
%构建第二层网络
w2 = tf.get_variable('w_2', [n_l1, n_actions], pyargs('initializer',w_initializer));
b2 = tf.get_variable('b_2', [1, n_actions], pyargs('initializer',b_initializer));
q_eval = tf.matmul(l1, w2) + b2;
%定义损失函数
loss = tf.reduce_mean(tf.squared_difference(q_target, q_eval));
%选择优化器并确定学习率以更新神经网络中的参数
train_op = tf.train.RMSPropOptimizer(0.01).minimize(loss);
%参数初始化
sess = tf.Session();
sess.run(tf.global_variables_initializer())
%给定输入数据和标签值
input = [1,3,1;4,2,5]; %输入数据的列数是3,行数是batch
s = np.matrix(input); %将数据转换numpy中的矩阵格式!!!
target = np.matrix([1,3,1,4,2;4,4,2,5,7]); %标签值的列数是5,行数是batch
%将数据写入tensor
dict = py.dict(pyargs(tf_obs.name,s,q_target.name,target));
%将数据放入神经网络,并运行
Q = sess.run(q_eval,pyargs('feed_dict',dict)); %运行至神经网络的输出
cost = sess.run(loss,pyargs('feed_dict',dict)); %运行至神经网络的输出
sess.run(train_op,pyargs('feed_dict',dict)); %运行神经网络并更新参数
%将tensorflow中的变量转换为matlab格式
q = single(Q);
c = single(cost);
t = double(target);
在matlab的工作区中,可以看到各变量的值和属性。

本文演示了如何在MATLAB环境中使用TensorFlow构建神经网络,包括前向传播、反向传播及参数更新的过程。通过具体代码示例,展示了定义占位符、初始化参数、构建网络层、设置损失函数及训练过程等关键步骤。
3520





