在MATLAB中使用tensorflow

本文演示了如何在MATLAB环境中使用TensorFlow构建神经网络,包括前向传播、反向传播及参数更新的过程。通过具体代码示例,展示了定义占位符、初始化参数、构建网络层、设置损失函数及训练过程等关键步骤。
部署运行你感兴趣的模型镜像

在MATLAB中使用tensorflow

下面的代码演示了如何在matlab中使用tensorflow建立神经网络,进行前向运算和反向更新。

clear 
clc

%导入tensorflow和numpy
tf = py.importlib.import_module("tensorflow");
np = py.importlib.import_module("numpy");

%每次运行代码时,重新画图
tf.reset_default_graph();

%定义超参数
n_states = 3;       %神经网络的输入
n_actions = 5;      %神经网络的输出
n_l1 = 10;          %隐藏层神经元的个数
batch_size = 2;     %批处理的数据

%定义tensor
tf_obs = tf.placeholder(tf.float32,pyargs('shape',[batch_size,n_states],'name','observations'));  %输入
q_target = tf.placeholder(tf.float32, pyargs('shape',[batch_size,n_actions], 'name','Q_target'));  %标签

% 初始化神经网络参数
w_initializer = tf.random_normal_initializer(0,0.3);
b_initializer = tf.constant_initializer(0.1);

%构建第一层网络
w1 = tf.get_variable('w_1', [n_states, n_l1], pyargs('initializer',w_initializer));
b1 = tf.get_variable('b_1', [1, n_l1], pyargs('initializer',b_initializer));
l1 = tf.nn.relu(tf.matmul(tf_obs, w1) + b1);
%构建第二层网络
w2 = tf.get_variable('w_2', [n_l1, n_actions], pyargs('initializer',w_initializer));
b2 = tf.get_variable('b_2', [1, n_actions], pyargs('initializer',b_initializer));
q_eval = tf.matmul(l1, w2) + b2;

%定义损失函数
loss = tf.reduce_mean(tf.squared_difference(q_target, q_eval));
%选择优化器并确定学习率以更新神经网络中的参数
train_op = tf.train.RMSPropOptimizer(0.01).minimize(loss);

%参数初始化
sess = tf.Session();
sess.run(tf.global_variables_initializer())

%给定输入数据和标签值
input = [1,3,1;4,2,5];                         %输入数据的列数是3,行数是batch
s = np.matrix(input);                          %将数据转换numpy中的矩阵格式!!!
target = np.matrix([1,3,1,4,2;4,4,2,5,7]);     %标签值的列数是5,行数是batch

%将数据写入tensor
dict = py.dict(pyargs(tf_obs.name,s,q_target.name,target));

%将数据放入神经网络,并运行
Q = sess.run(q_eval,pyargs('feed_dict',dict));     %运行至神经网络的输出
cost = sess.run(loss,pyargs('feed_dict',dict));    %运行至神经网络的输出
sess.run(train_op,pyargs('feed_dict',dict));       %运行神经网络并更新参数

%将tensorflow中的变量转换为matlab格式
q = single(Q);        
c = single(cost);
t = double(target);

在matlab的工作区中,可以看到各变量的值和属性。
在这里插入图片描述

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值