卷积神经网络组件介绍

在介绍各个组件之前,首先说明一下:深度学习是一种端到端的学习方式。其中无需人工干预,整个过程的特征提取以及目标任务的执行,在一开始设计的网络中已经定义好。

这里说明一点:通常说的网络的损失函数是指最后的网络输出与label的误差损失,而有时候大家会看到损失函数是由多部份组成,那么就要看在网络的设计过程中,哪些层、哪些模块进行了损失的计算。除此之外,有时还会对参数进行正则化,于是会出现正则化损失。

卷积操作是一种局部提取特征的方式,也称之为滤波器。根据使用目的的不同,可以设计多样化的卷积核,如边缘滤波器、横向滤波器、纵向滤波器等。假设想要提取边缘特征信息,可以这样设计滤波器:假定像素(x,y)处存在物体的边缘信息,那么就要弱化该像素的周边像素信息(x-1,y),(x+1,y),(x,y+1),(x,y-1)。那么卷积核可以设计为如下:

0 -4 0

-4 16 -4

0 -4 0

汇合层即池化层,分为多种,其中常见的有平均池化和最大池化方式。该操作最大的作用就是降采样,进行特征降维。除此之外,还有特征不变性(不考虑位置信息)以及防止过拟合的发生。需要注意的是:该操作在网络的训练过程中是不进行反向传播的,即没有参数进行更新,不存在参数。另外,池化/汇合操作某种程度上可以看成是一种向量的p-范数。当p趋向于正无穷时,即最大池化操作。

上述又提及到了向量的范数,之后会再次给大家进行介绍。

还有一种操作对于提高模型的表达能力是必不可少的,即激活函数,又名非线性映射层。正因为激活函数的存在,使得网络不再是单纯的线性映射的叠加,依旧是线性的。激活函数的设计来源于生物神经元的特性,当信号传至突出时,会对信号进行处理,产生兴奋或者抑制的效果,激活函数亦是如此。常见的激活函数有Sigmoid和ReLU线性校正单元函数。Sigmoid函数在某一范围内是有效的,详情可以参考函数图像以及梯度图像。当超出该范围,会导致梯度饱和效应的发生,使得网络无法进行训练,为此Hinton等人设计了ReLU。ReLU是一个分段函数。

最后,全连接层是针对特定目标任务设计的分类器。将特征空间映射为样本的标记空间。

上述纯是个人见解,如有误或者不当之处,希望大家谅解,也可以评论区留言,共同交流、共同进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值