自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 JAVA中的跳转语句—break、continue

一、break语句     在switch条件语句和循环语句中都可以使用break语句。当它出现在switch条件语句中时,作用是终止某个case并跳出switch结构。当它出现在循环语句中,作用是跳出循环语句,执行后面的代码。例子1演示:public class chaptertwo{ public static void main(String[] args) { int x=1; while(x<=4) { System.out.print

2020-12-13 01:11:15 89

原创 JAVA中的循环结构语句

     循环语句分为while循环语句、do…while循环语句和for循环语句3种,接下来介绍这三种的用法。     一、while循环语句          while根据条件判断来决定是否执行大括号的执行语句,while语句会反复进行条件判断,只要循环条件成立,执行语句就会执行,直到条件不成立,w

2020-12-11 16:50:19 34

原创 JAVA中的选择结构语句

一、if 条件语句        if条件语句分为3种语法格式,每一种格式都有自身的特点,下面进行介绍。        1. if 语句            if语句是指如果满足某种条件,就进行某种处理,语法为:          &nbsp

2020-12-11 10:56:04 90

原创 Pandas中的滑动窗口—rolling()函数方法

           在时间序列中,还有另外一个比较重要的概念—滑动窗口。滑动窗口指的是根据指定的单位长度来框住时间序列,从而计算框内的统计指标。相当于一个长度指定的滑块在刻度尺上面滑动,每滑动一个单位即可反馈滑块内的数据。           Pandas中提供了一个窗口方法rollin

2020-12-09 10:19:40 393

原创 Pandas中的重采样方法—resample()

       Pandas中的resample()是一个对常规时间序列数据重新采样和频率转换的便捷的方法,可以对原样本重新处理,其语法格式如下:resample(rule,how=None,axis=0,fill_method=None,closed=None,label=None,convention=“start”,kind=None,loffset=None,limit=None,base=0,on=None,level=None

2020-12-08 11:10:03 110

原创 Pandas中的时间序列的频率、偏移量

       通常,默认生成的时间序列是按天计算的,即频率为"D"。"D"是一个基础频率,通过用一个字符串的别名表示,比如"D"是"day"的别名。Pandas中的频率是由一个基础频率和一个乘数组成的,比如,"5D"表示每5天。       接下来,通过一张表来列举时间序列的基础频率...

2020-12-07 08:47:18 71

原创 Pandas中时间序列的移动—shift()函数方法

         移动是指沿着时间轴方向将数据进行前移或后移。Pandas对象中提供了一个shift()方法,用来前移或后移数据,但索引保持不变。shift()方法语法格式如下:shift(periods=1,freq=None,axis=0)部分参数含义如下:periods:表示移动的幅度,可以为正数,也可以为负数,默认值是1,代表移动一次。freq:如果这个参数存在,那么会按照参数值移动时间戳索引,而数据值

2020-12-07 08:20:42 222 1

原创 Pandas中的时期的频率转换—asfreq()方法

          在工作中统计数据时,可能会遇到类似于这样的问题,比如将某年的报告转换为季报告或月报告。为了解决这个问题,Pandas中提供了一个asfreq()方法来转换时期的频率,比如把某年转换为某月。 asfreq()方法的语法格式如下:asfreq(freq,method=None,normalize=False,fill_value=None)部分参数的含义如下:freq:表示计时单位,可

2020-12-06 19:54:24 146

原创 Pandas中创建固定频率的时间序列—date_range()方法解析

      Pandas中提供了一个date_range()函数,主要用于生成一个具有固定频率的DatetimeIndex对象,该函数的语法格式如下:     pandas.date_range(start=None,end=None,periods=None,freq=None,tz=None,normalize=False,name=None,closed=None,**kwargs)上述部

2020-12-06 19:52:19 135 1

原创 Pandas中通过时间戳索引选取子集和 truncate()方法

          DatetimeIndex的主要作用之一是用作Pandas对象的索引,使用它作为索引除了拥有普通索引对象的所有基本功能外,还拥有一些专门对时间序列数据操作的高级用法,比如根据日期的年份或月份获取数据,下面通过代码演示。          创建一个时间序列类型的Series对象,代码如下。

2020-12-05 12:53:25 46

原创 Pandas中的创建时间序列

       对于时间序列数据而言,必然少不了时间戳这一关键元素。Pandas中,时间戳使用Timestamp(Series派生的子类)对象表示,该对象与datetime有高度兼容性,可以直接通过to_datetime()函数将datetime转换为TimeStamp对象,例子如下:...

2020-12-05 08:53:59 72

原创 Seaborn中类别内的数据分布—绘制箱形图 boxplot() 和提琴图 violinplot()

          要想查看各个分类中的数据分布,显而易见,散点图是不满足需求的,原因是它不够直观。针对这种情况,我们可以绘制如下两种图形进行查看:箱形图:利用箱形图可以提供有关数据分散情况的信息,可以很直观地查看数据的四分位分布(1/4分位,中位数,3/4分位以及四分位距)。提琴图 :箱形图与核密度图的结合,它可以展示任意位置的密度,可以很直观地看到哪些位置的密度较高。一、绘制箱形图&nbsp

2020-12-05 08:53:03 101

原创 Seaborn中类别内的统计估计—绘制条形图 barplot() 和点图 pointplot()

          要想查看每个分类的集中趋势,则可以使用条形图和点图进行展示。Seaborn库中用于绘制这两种图表的具体函数如下:- barplot()函数:绘制条形图。- pointplot()函数:绘制点图。一、绘制条形图        最常用的查看集中趋势的图形就是条形图。默认情况下,barplot()函数会在整个

2020-12-04 12:58:41 68 1

原创 Seaborn中的分类数据类别散点图—swarmplot()与stripplot()函数方法

         类别散点图          通过stripplot()函数可以画一个散点图, stripplot()函数的语法格式如下:seaborn.stripplot(x=None,y=None,hue=None,data=None,order=None,hue_order=None,jitter=False,dodge=False,orient=None,color=None,palette=

2020-12-04 11:20:43 93

原创 Bokeh—通过plotting绘制图形

           plotting是以构建视觉符号为核心的接口,可以结合各种视觉元素(例如,点、圆、线等其他元素)和工具(例如,缩放、保存、重置等其他工具)创建可视化图形。使用bokeh.plotting创建图表的基本步骤如下:导入Bokeh库中用到的一些方法或函数。准备数据,这些数据既可以是普通的Python列表,也可以是NumPy数组或Series对象。选择输出方式,一张是使用out

2020-12-03 22:20:53 67

原创 Matplotlib本地保存图形—savefig()方法

         要想保存当前生成的图表,可以调用savefig()函数进行保存。savefig()函数的语法格式如下:         savefig(fname,dpi=None,facecolor=“w”,edgecolor=“w”,orientation=“portrait”,papertype=None,format=

2020-12-03 08:18:22 1485

原创 Seaborn中的绘制单变量分布—displot()函数方法

            当处理一组数组时,通常先要做的就是了解变量是如何分布的。对于单变量的数据来说,采用直方图或核密度曲线是个不错的选择,对于双变量来说,可采用多面板图形展现,比如散点图、二维直方图、核密度估计图形等。针对这种情况,Seaborn库提供了对单变量和双变量分布的绘制函数,如displot()函数、jointplot()函数,下面介绍displot()函数的使用,具体如下。

2020-12-03 08:17:52 245

原创 Seaborn绘制成对的双变量分布—pairplot()函数方法

         要想在数据集中绘制多个成对的双变量分布,则可以使用pairplot()函数实现,该函数会创建一个坐标轴矩阵,并且显示DataFrame对象中每对变量对的关系。另外,pairplot()函数也可以绘制每个变量在对角轴上的单变量分布。接下来,通过sns.pairplot()函数绘制数据集变量间关系的图形,代码如下:import seaborn as sns #绘制成对的双变量分布da

2020-12-02 09:52:09 175

原创 Seaborn中的绘制双变量分布—jointplot()函数方法

          两个变量的二元分布可视化也很有用。在Seaborn中最简单的方法是使用jointplot()函数,该函数可以创建一个多面板图形,比如散点图、二维直方图、核密度估计等,以显示两个变量之间的双变量关系及每个变量在单独坐标轴上的单变量分布。          jointplot()函数的语法格式

2020-12-02 09:10:56 316

原创 Matplotlib中的绘制折线图—plot()方法

             折线图是一种将数据点按照顺序连接起来的图形。可以看作是将散点图,按照 x 轴坐标顺序连接起来的图形。折线图的主要功能是查看因变量y随着自变量x改变的趋势,最适合用于显示随时间(根据常用比例设置)而变化的连续数据。同时还可以看出数量的差异,增长趋势的变化。        //

2020-12-01 09:25:56 58

原创 Matplotlib中的绘制散点图—scatter()方法

       散点图以某个特征为横坐标,以另一个特征为纵坐标,通过散点图的疏密程度和变化趋势表示两个特征的数量关系。常应用于显示若干数据系列中各数值之间的关系,类似于x、y轴判断两变量之间是否存在某种关联。pyplot模块中的scatter()函数用于绘制散点图,其语法格式如下:matplotlib.pyplot.scatter(x,y,s=None,c=None,marker=None,camp=None,norm=None,vmi

2020-12-01 09:25:07 115 2

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除