斯凯利.瑞恩
码龄5年
关注
提问 私信
  • 博客:67,688
    67,688
    总访问量
  • 63
    原创
  • 19,786
    排名
  • 822
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 目前就职: 华为信息技术有限公司
  • 加入CSDN时间: 2020-04-30
博客简介:

m0_47498690的博客

查看详细资料
  • 原力等级
    当前等级
    4
    当前总分
    527
    当月
    28
个人成就
  • 获得1,108次点赞
  • 内容获得3次评论
  • 获得889次收藏
  • 代码片获得640次分享
创作历程
  • 4篇
    2025年
  • 64篇
    2024年
成就勋章
TA的专栏
  • JAVA
    15篇
  • 机器学习
    7篇
  • 大数据技术与项目实战
    9篇
  • Python&数据分析
    19篇
  • 数学建模
    23篇
兴趣领域 设置
  • Python
    pythonscikit-learn
  • Java
    java
  • 数据结构与算法
    排序算法
  • 人工智能
    分类回归
  • 数学
    数学建模
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Java对象深拷贝详解(List深拷贝)

方式优点缺点构造函数1. 底层实现简单 2. 不需要引入第三方包 3. 系统开销小 4. 对拷贝类没有要求,不需要实现额外接口和方法1. 可用性差,每次新增成员变量都需要新增新的拷贝构造函数重载clone()方法1. 底层实现较简单 2. 不需要引入第三方包 3. 系统开销小追求性能的可以采用该方式1. 可用性较差,每次新增成员变量可能需要修改clone()方法 2. 拷贝类(包括其成员变量)需要实现Cloneable接口Apache Commons Lang序列化。
转载
发布博客 2025.01.12 ·
182 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

关于Java数组操作函数

通过 Java Util 类的 Array.fill(arrayname,value) 方法和 Array.fill(arrayname ,starting index ,ending index ,value) 方法向数组中填充元素。通过 List 类的 Arrays.toString () 方法和 List 类的 list.Addall(array1.asList(array2) 方法将两个数组合并为一个数组。binarySearch() 方法来查找数组中的元素,返回该元素所在的位置。
原创
发布博客 2025.01.12 ·
418 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

Java字符串常用操作(方法)

创建一个String对象,并初始化一个值。String类是不可改变的,一旦创建了一个String对象,它的值就不能改变了。如果想对字符串做修改,需要使用类。char为字符类型,String为字符串类型String字符串是用" "来包含串的, char是用’ '来包含单字符的String内部用来存储的结果是一个char字符数组。
原创
发布博客 2025.01.12 ·
733 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

Java ArrayList

此外,BigInteger、BigDecimal 用于高精度的运算,BigInteger 支持任意精度的整数,也是引用类型,但它们没有相对应的基本类型。Collections 类也是一个非常有用的类,位于 java.util 包中,提供的 sort() 方法可以对字符或数字列表进行排序。ArrayList 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删除元素。ArrayList 中的元素实际上是对象,在以上实例中,数组列表元素都是字符串 String 类型。
原创
发布博客 2025.01.12 ·
631 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

强化学习简介

强化学习并不是某一种特定的算法,而是一类算法的统称。它的核心思想是,如果某种策略能够带来较高的得分或奖励,那么就进一步“强化”这种策略,以期望在未来继续取得好的结果。换句话说,强化学习是一种学习如何从状态映射到行为以使得获取的奖励最大的学习机制。这样的一个agent需要不断地在环境中进行实验,通过环境给予的反馈(奖励)来不断优化状态-行为的对应关系。因此,反复实验(trial and error)和延迟奖励(delayed reward)是强化学习最重要的两个特征。
原创
发布博客 2024.12.02 ·
797 阅读 ·
22 点赞 ·
0 评论 ·
12 收藏

@Cacheable加缓存导致的跳过校验 & self自调用

上面的代码在getData方法前面加了@Cacheable注解,实现了加缓存的操作;不过仔细梳理逻辑就会发现:当一次调用该方法请求数据;cache中没有数据,于是调用getData方法获取数据,并且将查到的数据存在缓存当中;当第二次查数据的时候,会直接从cache里面找数据,此时不会调用getData方法;因此也就直接跳过了校验。导致后面查找数据时不需要校验就可以直接从缓存里面获取数据。
原创
发布博客 2024.12.02 ·
944 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

Java项目中加缓存

1.更新频率低;但读写频率高的数据很适合加缓存;2.可以加缓存的地方很多:浏览器的缓存;CDN的缓存;服务器的缓存;本地内存;分布式远端缓存;
原创
发布博客 2024.11.28 ·
454 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Java MySQL 连接

本章节我们为大家介绍 Java 如何使用 使用 JDBC 连接 MySQL 数据库。,解压后得到 jar 库文件,然后在对应的项目中导入该库文件。
原创
发布博客 2024.11.26 ·
1582 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Java 反射(Reflection)

Java 反射(Reflection)是一个强大的特性,它允许程序在运行时查询、访问和修改类、接口、字段和方法的信息。反射提供了一种动态地操作类的能力,这在很多框架和库中被广泛使用,例如Spring框架的依赖注入。
原创
发布博客 2024.11.26 ·
928 阅读 ·
24 点赞 ·
0 评论 ·
7 收藏

JAVA深拷贝与浅拷贝

在Java语言里,当我们需要拷贝一个对象时,有两种类型的拷贝:浅拷贝与深拷贝。浅拷贝只是拷贝了源对象的地址,所以源对象的值发生变化时,拷贝对象的值也会发生变化。而深拷贝则是拷贝了源对象的所有值,所以即使源对象的值发生变化时,拷贝对象的值也不会改变。
原创
发布博客 2024.11.26 ·
1048 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

死锁的概念&死锁的预防与处理方案

死锁的预防是通过破坏产生死锁的必要条件之一,是系统不会产生死锁。简单方法是在系统运行之前就采取措施,即在系统设计时确定资源分配算法,消除发生死锁的任何可能性。该方法虽然比较保守、资源利用率低,但因简单明了并且安全可靠,仍被广泛采用。这是一种预先的静态策略。王道考研的老师在将安全序列的时候,举了一个银行给BAT三家公司借钱的例子用来引出银行家算法,很有意思。
原创
发布博客 2024.11.26 ·
1290 阅读 ·
34 点赞 ·
0 评论 ·
13 收藏

Spring集成RabbitMQ

官网:https://spring.io/projects/spring-amqp。
原创
发布博客 2024.11.26 ·
726 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

RabbitMQ代码实战2

confirm模式大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回 确认的同时继续发送下一条消息,当消息终得到确认之后,生产者应用便可以通过回调方法来处理该 确认消息,如果RabbitMQ因为自身内部错误导致消息丢失,就会发送一条nack消息,生产者应用程序 同样可以在回调方法中处理该nack消息。如果消息和队列时可以持久化的,那么确认消息会将消息写入磁盘后发出。总结:使用事务,可以在发送请求但是没有提交事务前回滚事务,撤回发送的消息。如何确定消息队列收到了生产者发送的消息?
原创
发布博客 2024.11.26 ·
763 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

RabbitMQ 消息队列代码实战1

首先,我们需要加入rabbitmq的amqp client依赖
原创
发布博客 2024.11.25 ·
522 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

RabbitMQ 消息队列

RabbitMQ 是一个开源的消息代理和队列服务器,它支持多种消息协议,包括 AMQP(高级消息队列协议),MQTT,STOMP 等。RabbitMQ 被广泛用于异步消息处理、事件驱动架构、微服务架构等场景。RabbitMQ 提供了灵活的路由功能、高可用性、持久化、集群和多种语言的客户端库,使其成为构建复杂消息传递系统的理想选择。
原创
发布博客 2024.11.25 ·
1426 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

kafka&消息队列

当今社会各种应用系统诸如商业、社交、搜索、浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战:如何收集这些巨大的信息如何分析它如何及时做到如上两点以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要一个沟通两者的桥梁-消息系统。从一个微观层面来说,这种需求也可理解为不同的系统之间如何传递消息。由 linked-in 开源。
转载
发布博客 2024.11.17 ·
38 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

R语言基于决策树的银行信贷风险预警模型 附数据代码

决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论。因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组表达式规则。决策树是数据分析中一种经常要用到且非常重要的技术,既能够用于数据分析,也能够作预测。
原创
发布博客 2024.11.08 ·
839 阅读 ·
13 点赞 ·
0 评论 ·
14 收藏

Python信贷风控模型:梯度提升Adaboost,XGBoost,SGD, GBOOST, SVC,随机森林, KNN预测金融信贷违约支付和模型优化 附数据代码

保持两者之间的平衡。从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。2005年9月的还款状态(-1 =正常付款,1 =延迟一个月的付款,2 =延迟两个月的付款,8 =延迟八个月的付款,9 =延迟9个月以上的付款)
原创
发布博客 2024.11.08 ·
969 阅读 ·
25 点赞 ·
0 评论 ·
15 收藏

Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码

最近我们被客户要求撰写关于银行拉新活动的研究报告,包括一些图形和统计输出。项目背景:银行的主要盈利业务靠的是贷款,这些客户中的大多数是存款大小不等的责任客户(存款人)。银行拥有不断增长的客户该银行希望增加借款人(资产客户),开展更多的贷款业务,并通过贷款利息赚取更多利润。因此,银行希望将负债的客户转换为个人贷款客户。(同时保留他们作为存款人)。该银行去年针对负债客户开展的一项活动显示,成功实现了9%以上的成功转化率。该部门希望建立一个模型,来帮助他们确定购买贷款可能性更高的潜在客户。
原创
发布博客 2024.11.07 ·
1342 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

银行信贷风控专题:Python、R 语言机器学习数据挖掘应用实例合集:xgboost、决策树、随机森林、贝叶斯等

原创 拓端研究室全文链接:https://tecdat.cn/?p=38026本银行信贷风控专题合集将通过代码和数据案例深入探讨这些金融场景中的问题与解决方案,通过对数据的深入分析、模型的构建与优化,为金融机构提供有效的风险管控策略,以促进金融市场的稳定与健康发展。
原创
发布博客 2024.11.07 ·
764 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏
加载更多