Python数据分析笔记 2
print("hello")
hello
import numpy as np
arr1 = np.array([1,2,3])
type(arr1)
numpy.ndarray
np.array(range(1,4)).dtype
np.array(range(1,4)).astype('float')
array([1., 2., 3.])
"""
#####形状与行列##############
我们可以使用shape来查看数组的形状,即几行几列
同样,我们也能够使用reshape,对形状重塑
"""
ar = np.array(range(0,12))
ar
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
ar.shape
(12,)
new_ar = ar.reshape(3,4)
new_ar
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
arr3 = np.arange(0,12).reshape(3,4)
arr3
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
arr3.sum(axis = 0)
array([12, 15, 18, 21])
arr3.sum(axis = 1)
array([ 6, 22, 38])
arr = np.arange(0,12).reshape(3,4)
arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
arr + arr
array([[ 0, 2, 4, 6],
[ 8, 10, 12, 14],
[16, 18, 20, 22]])
arr2 = np.arange(0,3).reshape(3,1)
arr2 + arr
array([[ 0, 1, 2, 3],
[ 5, 6, 7, 8],
[10, 11, 12, 13]])
arr3 = np.arange(0,4).reshape(1,4)
arr3 + arr
array([[ 0, 2, 4, 6],
[ 4, 6, 8, 10],
[ 8, 10, 12, 14]])
arr = np.array([5,5,1,0,1])
arr[::]
array([5, 5, 1, 0, 1])
arr[0:-1]
array([5, 5, 1, 0])
arr[0:-2]
array([5, 5, 1])
arr[0:1]
array([5])
arr[2:4]
array([1, 0])
arr = np.empty((4, 4))
for i in range(4):
arr[i] = (i+1)**2
arr
array([[ 1., 1., 1., 1.],
[ 4., 4., 4., 4.],
[ 9., 9., 9., 9.],
[16., 16., 16., 16.]])
arr[[2, 3, 0]]
array([[ 9., 9., 9., 9.],
[16., 16., 16., 16.],
[ 1., 1., 1., 1.]])
arr[[2, 3, 0]][[0, 2, 1]]
array([[ 9., 9., 9., 9.],
[ 1., 1., 1., 1.],
[16., 16., 16., 16.]])
arr = np.arange(0,12).reshape(3,4)
arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
print("sum={},mean={},mean_r={},mean_c={}".format(arr.sum(),arr.mean(),arr.mean(axis=0),arr.mean(axis=1)))
sum=66,mean=5.5,mean_r=[4. 5. 6. 7.],mean_c=[1.5 5.5 9.5]
arr = np.random.randn(6)
arr
array([ 0.17342069, -1.95010593, -0.3540656 , -0.67835231, -0.5646235 ,
0.22358578])
arr.sort()
arr
array([-1.95010593, -0.67835231, -0.5646235 , -0.3540656 , 0.17342069,
0.22358578])