Scipy

Scipy


Introduction

SciPy是一个建立在Python的NumPy扩展上的数学算法和便利函数的集合。它通过为用户提供操作和可视化数据的高级命令和类,为交互式Python会话增加了巨大的力量。有了SciPy,交互式Python会话就变成了一个可以与MATLAB、IDL、Octave、R-Lab和SciLab等系统相媲美的数据处理和系统原型设计环境。

以Python为基础的SciPy的另一个好处是,这也使得一种强大的编程语言可以用于开发复杂的程序和专门的应用程序。使用SciPy的科学应用得益于世界各地的开发者在软件领域的众多利基中开发的附加模块。从并行编程到网络和数据库子程序和类,所有的东西都已提供给Python程序员使用。除了SciPy中的数学库外,所有这些功能都可以使用。

本教程将让第一次使用SciPy的人了解它的一些最重要的功能。它假定用户已经安装了SciPy软件包。还假设了一些通用的 Python 设施,比如通过 Python 发行版的教程可以获得。对于进一步的介绍性帮助,用户将被引导到NumPy文档。

Translated with DeepL

Scipy Organization

SciPy被组织成覆盖不同科学计算领域的子包。下表对这些子包进行了总结:

SciPy 分为涵盖不同科学计算领域的子包,概述如下:

Subpackage分包Description描述
cluster集群Clustering algorithms聚类算法
constants常数Physical and mathematical constants物理和数学常数
fftpackFftpackFast Fourier Transform routines快速傅里叶变换的例行公事
integrate整合Integration and ordinary differential equation solvers集成和常微分方程解决器
interpolate插入Interpolation and smoothing splines插值和平滑样条
ioInput and Output输入和输出
linalg琳达Linear algebra线性代数
ndimage(咒语)N-dimensional image processingN 维图像处理
odrODROrthogonal distance regression正交距离回归
optimize优化Optimization and root-finding routines优化和寻根程序
signal信号Signal processing信号处理
sparse稀疏Sparse matrices and associated routines稀疏矩阵和相关例程
spatial空间Spatial data structures and algorithms空间数据结构和算法
special特别的Special functions特殊功能
stats统计数据Statistical distributions and functions统计分布和函数
SubpackageDescription
clusterClustering algorithms
constantsPhysical and mathematical constants
fftpackFast Fourier Transform routines
integrateIntegration and ordinary differential equation solvers
interpolateInterpolation and smoothing splines
ioInput and Output
linalgLinear algebra
ndimageN-dimensional image processing
odrOrthogonal distance regression
optimizeOptimization and root-finding routines
signalSignal processing
sparseSparse matrices and associated routines
spatialSpatial data structures and algorithms
specialSpecial functions
statsStatistical distributions and functions

SciPy sub-packages need to be imported separately, for example:

SciPy的子包需要单独导入,例如:

from scipy import linalg, optimize

由于它们的普遍性,这些子包中的一些函数也在scipy命名空间中提供,以方便它们在交互式会话和程序中使用。此外,numpy的许多基本数组函数也可以在scipy包的顶层使用。在逐一查看子包之前,我们先来看看其中的一些常用函数。

Finding Documentation

SciPy和NumPy有HTML和PDF格式的文档版本,可在https://docs.scipy.org/,这些文档几乎涵盖了所有可用的功能。然而,这些文档仍在进行中,有些部分可能是不完整或稀少的。由于我们是一个志愿者组织,依靠社区的发展,我们欢迎并积极鼓励你的参与–从提供反馈到改进文档和代码的一切。

Python的文档字符串在SciPy中被用于在线文档。有两种方法可以阅读它们并获得帮助。一种是Python的pydoc模块中的命令帮助。输入这个没有参数的命令 (即 >>> help ) 可以启动一个交互式的帮助会话,允许在所有 Python 可用的关键字和模块中进行搜索。其次,以一个对象为参数运行命令help(obj)可以显示该对象的调用签名和文档字符串。

pydoc 的帮助方法很复杂,但使用一个 pager 来显示文本。有时这可能会干扰到你正在运行的交互式会话的终端。numpy.info命令下也有一个numpy/scipy专用的帮助系统。传递给帮助命令的对象的签名和文档字符串被打印到标准输出(或作为第三个参数传递的可写对象)。numpy.info的第二个关键字参数定义了打印时的最大行宽。如果一个模块被作为参数传递给help,那么将打印出该模块中定义的函数和类的列表。比如说:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值