数学建模
文章平均质量分 87
数学建模各类算法分享,以及数学建模竞赛相关内容。
斯凯利.瑞恩
这个作者很懒,什么都没留下…
展开
-
NSGA-II算法求解多目标优化问题
向量支配对于最小化问题,一个向量u=(u1,u2…un)支配另一个向量v=(v1,v2…vn),当且仅当ui≤vi。原创 2024-10-28 00:35:07 · 1391 阅读 · 0 评论 -
多目标优化求解的内涵&主要方法
minfxf1xf2x⋯fnx)]1其中,fix∀i1⋯n表示多个目标函数。通过非负加权求和把上面多目标优化转化为单目标问题,minJxw1f1xw2f2x⋯wnfx2优化问题(1)就是多目标优化问题,优化问题(2)就是单目标优化。原创 2024-10-27 22:57:23 · 950 阅读 · 0 评论 -
2023国赛C题 蔬菜类商品的自动定价与补货决策(上)
问题1主要的代码和思路在上一篇文章“数学建模实战块速入门”中已经进行了较为详细的展示,在问题一种要求我们从蔬菜单品和品类两个维度去分析各自之间的关系。我们采用的方法便是计算对应单品或者品类之间的相关系数;主要的相关系数有或者**(Pearson)皮尔逊相关系数**等。;原创 2024-09-21 18:13:21 · 1559 阅读 · 2 评论 -
动态规划(三)& 代码实战篇
斐波那契数列是一个每一项都是前两项和的数列,定义为:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) 对于所有 n > 1。这段代码首先定义了一个函数fibonacci,它接受一个整数n作为参数,表示要计算的斐波那契数列的项数。然后,它使用一个列表dp来存储已经计算出的斐波那契数,避免了重复计算。通过迭代的方式,它填充了这个列表,最终返回了第n项的值。原创 2024-08-29 10:10:55 · 1150 阅读 · 0 评论 -
动态规划(二)
动态规划(二)1.动态规划求解投资分配问题2.动态规划求解背包问题3.动态规划求解排序问题原创 2024-08-22 19:21:45 · 532 阅读 · 0 评论 -
动态规划(一)
动态规划是运筹学的一个分支,是求解多阶段决策过程最优化问题的数学方法。动态规划在经济管理、工程技术、工农业生产及军事部门中都有着广泛的应用,并且获得了显著的效果。学习动态规划,我们首先要了解多阶段决策问题。最短路径问题:背包问题:生产决策问题**:企业在生产过程中,由于需求是随时间变化的,因此企业为了获得全年的最佳生产效益,就要在整个生产过程中逐月或逐季度地根据库存和需求决定生产计划。机器负荷分配问题:某种机器可以在高低两种不同的负荷下进行生产。要求制定一个五年计划,在每年开始时,决定如何重新分配完好的机器原创 2024-08-21 23:54:06 · 1270 阅读 · 0 评论 -
遗传算法原理与实战(python、matlab)
遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化论和遗传学原理的全局优化搜索算法。它通过模拟自然界中生物种群的遗传机制和进化过程来解决复杂问题,如函数优化、组合优化、机器学习等。遗传算法具有并行性、全局搜索能力和对问题描述的简单性,在很多领域有着广泛应用。原创 2024-08-19 17:32:47 · 1759 阅读 · 0 评论 -
蚁群算法原理与实战(Python、MATLAB、C++)
(1)初始化参数:epochs表示迭代次数,ants表示蚂蚁数量,alpha和beta是信息素重要程度的参数,rho是信息素挥发速度,Q是信息素强度常数。(2)计算城市之间的距离矩阵:使用numpy的linalg.norm函数计算每对城市之间的欧几里得距离,并将结果存储在Distance矩阵中。(3)初始化信息素矩阵Tau:将所有元素设置为1.0。(4)初始化每只蚂蚁的路线图Route:创建一个ants x cities的零矩阵,表示每只蚂蚁访问过的城市。原创 2024-08-19 15:32:41 · 1854 阅读 · 0 评论 -
模拟退火算法实战
由于该解的表示简单,采用实数编码即可。原创 2024-08-17 18:55:00 · 1231 阅读 · 0 评论 -
模拟退火算法
模拟退火算法(Simulated Annealing, SA)是一种基于概率的启发式搜索算法,其灵感来源于固体材料的退火过程。该算法通过模拟物理退火过程中的降温来逐步寻找到问题的全局最优解。SA算法在解决组合优化问题时具有显著的优势,特别是在处理具有多个局部最优解的复杂问题时。算法的关键在于如何控制温度的下降速率以及如何设计初始温度和终止温度,这些参数直接影响算法的性能和最终解的质量。原创 2024-08-16 15:57:35 · 1541 阅读 · 0 评论 -
时间序列分析详解
简单平均法简单平均法就是预测的值为之前过去所有值的平均.当然这不会很准确,但这种预测方法在某些情况下效果是最好的。移动平均法我们经常会遇到这种数据集,比如价格或销售额某段时间大幅上升或下降。如果我们这时用之前的简单平均法,就得使用所有先前数据的平均值,但在这里使用之前的所有数据是说不通的,因为用开始阶段的价格值会大幅影响接下来日期的预测值。因此,我们只取最近几个时期的价格平均值。很明显这里的逻辑是只有最近的值最要紧。这种用某些窗口期计算平均值的预测方法就叫移动平均法。指数平滑法。原创 2024-08-15 15:27:26 · 1642 阅读 · 0 评论 -
k-means聚类算法&k-means++聚类算法
是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得。也就是说,聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。原创 2024-08-14 00:10:28 · 2422 阅读 · 0 评论 -
聚类算法&k-means聚类
判别分析方法假定组(或类)已事先分好,判别新样品应归属哪一组,对组的事先划分有时也可以通过聚类分析得到。**聚类分析:**将分类对象分成若干类,相似的归为同一类,不相似的归为不同的类。聚类分析分为(分类对象为样品)和(分类对象为变量)两种。原创 2024-08-14 00:09:19 · 1176 阅读 · 0 评论 -
评价算法(topsis&熵权法)
*原创 2024-08-13 00:37:57 · 3283 阅读 · 0 评论 -
灰色预测理论及其应用
灰色系统理论研究传统数理统计难以解决的“小数据、贫信息”不确定性系统的建模问题,具有样本需求量小、建模过程简单、建模结果可靠等优点。1.灰色系统与灰度 灰色系统理论使用来研究由于信息匮乏所导致的“外延明确,内涵不明确的”不确定问题的一类建模问题。。在控制论中,人们通常用颜色的深浅来表示信息的已知程度。用“黑”表示信息未知。“白”表示信息已知。用“灰”表示部分信息已知,部分信息未知。在灰色系统中,通常把这种只知道取值范围而不知道确切值不确定数称为灰数,灰数是灰色系统的基本单元或“细胞”。原创 2024-08-12 02:08:39 · 1175 阅读 · 0 评论 -
MATLAB优化工具箱
该工具箱包含适用于下列各项的求解器:线性规划 (LP)、混合整数线性规划 (MILP)、二次规划 (QP)、二阶锥规划 (SOCP)、非线性规划 (NLP)、约束线性最小二乘、非线性最小二乘和非线性方程。注:对向量 x xx 仿射变换(相当于将一个图形平移,或变大变小,或旋转,或倒影):y = A x + b y = A x + by=Ax+b,其中 A x A xAx 表示对 x xx变大或变小或旋转倒影,而 + b + b+b 表示平移。转载 2024-08-12 01:33:33 · 551 阅读 · 0 评论 -
数学建模实战快速入门
这个问题需要综合运用统计分析、运筹学模型和市场研究来解决。实际的解决方案将依赖于具体的数据和商业环境。如果需要进一步的数学建模或编程实现,可以提供更详细的数据和要求。我们继续追问要求给出详细的建模方案:问题1: 销售量的分布规律及相互关系分析数据预处理:清洗数据,处理缺失值和异常值。描述性统计分析:了解各品类和单品的销售量、价格、时间等基本统计特性。时间序列分析:对销售数据进行时间序列分析,识别趋势、季节性和周期性。相关性分析:使用皮尔逊相关系数等方法分析不同品类和单品之间的相关性。原创 2024-08-02 11:25:52 · 1597 阅读 · 0 评论 -
数学建模竞赛中应掌握的10类算法
这篇文章是搬运自2004年发表在MATHEMATICAL MODELING即《数模》上的一篇文章,作者是董乘宇,曾任SHUMO.COM论坛“编程交流”版版主,获2002年全国大学生数学建模竞赛一等奖。原创 2024-07-26 18:55:02 · 1072 阅读 · 0 评论 -
matlab基础入门
、\规则:B 除 A : A / B = A ∗ i n v ( B ) , A B = i n v ( A ) ∗ B B除A:A/B=A*inv(B),A\ B=inv(A)*BB除A:A/B=A∗inv(B),A B=inv(A)∗B,注意除数与被除数。当A不是方阵或者A非满秩时,A不存在逆,但是若能找到与A的转置同型的矩阵B,满足ABA=A, BAB=B,则称B为A的伪逆,也称广义逆矩阵,求伪逆pinv(A)A’ ——当A为复数矩阵时A’既实现了转置也实现了共轭,A.'只实现转置。原创 2024-07-24 01:30:30 · 1278 阅读 · 0 评论 -
标准化与归一化
可以看出归一化比标准化方法产生的标准差小,使用归一化来缩放数据,则数据将更集中在均值附近。这是由于归一化的缩放是“拍扁”统一到区间(仅由极值决定),而标准化的缩放是更加“弹性”和“动态”的,和整体样本的分布有很大的关系。所以归一化不能很好地处理离群值,而标准化对异常值的鲁棒性强,在许多情况下,它优于归一化。(3)如果数据存在异常值和较多噪音,用标准化,可以间接通过中心化避免异常值和极端值的影响。(2)如果数据较为稳定,不存在极端的最大最小值,用归一化。(1)如果对输出结果范围有要求,用归一化。原创 2024-07-17 01:16:13 · 344 阅读 · 0 评论 -
MATLAB 智能算法入门学习
问题:请问怎么划分寝室,保证不同寝室间,同寝室同学的共同爱好数量分布尽可能均匀。(方差标准差尽可能小)共同兴趣爱好: 寝室 N: (A,B)+(A,C)+(A,D)+(B,C)+(B,D)+(C,D)数据链接:https://wws.lanzous.com/b01htrmwj。NO.1 觅食行为。原创 2024-07-17 01:25:58 · 917 阅读 · 0 评论 -
异常值检测与预测
前言异常检测的场景很多,例如硬件的故障检测、流量的异常点的检测等场景。这篇博客我们针对的是时间序列的异常检测。时间序列异常的检测算法有很多,业界比较流行的比如普通的统计学习方法–3σ原则,它利用检测点偏移量来检测出异常。比如普通的回归方法,用曲线拟合方法来检测新的节点和拟合曲线的偏离程度,甚至有人讲CNN和RNN技术应用到异常点的检测。通过普通的阈值来检测流量异常的方法效果比较差,本篇文章提出了一种新的检测算法,下面将重点介绍我们在实践过程中的经验。原创 2024-07-17 01:17:37 · 769 阅读 · 0 评论 -
matlab作图美化
【代码】matlab作图美化。原创 2024-07-17 01:20:54 · 396 阅读 · 0 评论
分享