机器学习
文章平均质量分 88
AI与机器学习算法分享
斯凯利.瑞恩
这个作者很懒,什么都没留下…
展开
-
强化学习简介
强化学习并不是某一种特定的算法,而是一类算法的统称。它的核心思想是,如果某种策略能够带来较高的得分或奖励,那么就进一步“强化”这种策略,以期望在未来继续取得好的结果。换句话说,强化学习是一种学习如何从状态映射到行为以使得获取的奖励最大的学习机制。这样的一个agent需要不断地在环境中进行实验,通过环境给予的反馈(奖励)来不断优化状态-行为的对应关系。因此,反复实验(trial and error)和延迟奖励(delayed reward)是强化学习最重要的两个特征。原创 2024-12-02 00:41:35 · 797 阅读 · 0 评论 -
R语言基于决策树的银行信贷风险预警模型 附数据代码
决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论。因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组表达式规则。决策树是数据分析中一种经常要用到且非常重要的技术,既能够用于数据分析,也能够作预测。原创 2024-11-08 00:56:06 · 839 阅读 · 0 评论 -
Python信贷风控模型:梯度提升Adaboost,XGBoost,SGD, GBOOST, SVC,随机森林, KNN预测金融信贷违约支付和模型优化 附数据代码
保持两者之间的平衡。从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。2005年9月的还款状态(-1 =正常付款,1 =延迟一个月的付款,2 =延迟两个月的付款,8 =延迟八个月的付款,9 =延迟9个月以上的付款)原创 2024-11-08 00:55:30 · 969 阅读 · 0 评论 -
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
最近我们被客户要求撰写关于银行拉新活动的研究报告,包括一些图形和统计输出。项目背景:银行的主要盈利业务靠的是贷款,这些客户中的大多数是存款大小不等的责任客户(存款人)。银行拥有不断增长的客户该银行希望增加借款人(资产客户),开展更多的贷款业务,并通过贷款利息赚取更多利润。因此,银行希望将负债的客户转换为个人贷款客户。(同时保留他们作为存款人)。该银行去年针对负债客户开展的一项活动显示,成功实现了9%以上的成功转化率。该部门希望建立一个模型,来帮助他们确定购买贷款可能性更高的潜在客户。原创 2024-11-07 20:59:02 · 1342 阅读 · 0 评论 -
银行信贷风控专题:Python、R 语言机器学习数据挖掘应用实例合集:xgboost、决策树、随机森林、贝叶斯等
原创 拓端研究室全文链接:https://tecdat.cn/?p=38026本银行信贷风控专题合集将通过代码和数据案例深入探讨这些金融场景中的问题与解决方案,通过对数据的深入分析、模型的构建与优化,为金融机构提供有效的风险管控策略,以促进金融市场的稳定与健康发展。原创 2024-11-07 20:58:24 · 764 阅读 · 0 评论 -
多目标优化求解的内涵&主要方法
minfxf1xf2x⋯fnx)]1其中,fix∀i1⋯n表示多个目标函数。通过非负加权求和把上面多目标优化转化为单目标问题,minJxw1f1xw2f2x⋯wnfx2优化问题(1)就是多目标优化问题,优化问题(2)就是单目标优化。原创 2024-10-27 22:57:23 · 949 阅读 · 0 评论 -
机器学习之 AdaBoost(Adaptive Boosting)
AdaBoost的基本思想是迭代地训练一系列弱分类器,每个弱分类器针对训练数据集进行训练,并根据上一个弱分类器的结果对数据进行加权。在每一轮迭代中,AdaBoost都会关注上一轮分类错误的样本,尝试通过调整权重使得这些样本在下一轮分类中得到更好的处理。最终,将这些弱分类器组合成一个强分类器,其性能优于单个弱分类器。原创 2024-10-24 16:54:01 · 738 阅读 · 0 评论
分享