
Yolo11改进策略:注意力改进|VOLO,视觉识别中的视觉展望器|即插即用|附代码+改进方法
本文参考的是《VOLO:视觉识别中的视觉展望器》一文,该论文主要讨论了视觉识别领域中卷积神经网络(CNNs)与视觉转换器(ViTs)的性能对比,并提出了一个新的模型架构——Vision Outlooker(VOLO)。VOLO通过引入一种新颖的前景注意力机制(Outlook Attention),在ImageNet分类任务上实现了卓越的性能,且能够很好地迁移到下游任务,如语义分割。
个人简介:专注AI技术,紧跟时代前沿,将最新的论文成果运用到Yolo系列的改进中!每篇文章都包含几种改进方法,步骤详细,解释清楚,还提供了PDF版本的文章和完整的改进代码!大家遇到使用的问题,或者我写的不清楚的地方,请私信告诉我!如果是写的不够清楚,我再去修改,如果有错误和Bug,我尽快修复!谢谢大家!
2024年YoloV8改进创新指南
YoloV8最新改进手册——高阶篇
YoloV10改进手册——高阶篇
超越Yolov9:从技术升级到论文的全程指南
Yolo分割实战、改进合集
python实战1200例
高质量AI论文翻译
Yolo系列小目标改进与实战
YoloV5|V7改进与实战——高阶篇
大模型论文翻译与实战
RT-DETR实战与改进手册
Yolo系列轻量化改进
通用视觉论文与模型
深度学习精讲与实战
行人跟踪、ReID以及行人属性
Yolo11实战、改进——高阶指导
图像分类实战
疑难问题
python基础
NLP
OpenMMLab实战营
2023必读AI论文翻译
大模型部署实战
知识蒸馏
超分辨率采样 
