AI智韵
码龄5年
关注
提问 私信
  • 博客:1,412,761
    社区:810
    视频:62
    1,413,633
    总访问量
  • 749
    原创
  • 1,789
    排名
  • 13,460
    粉丝

个人简介:专注AI技术,紧跟时代前沿,将最新的论文成果运用到Yolo系列的改进中!每篇文章都包含几种改进方法,步骤详细,解释清楚,还提供了PDF版本的文章和完整的改进代码!大家遇到使用的问题,或者我写的不清楚的地方,请私信告诉我!如果是写的不够清楚,我再去修改,如果有错误和Bug,我尽快修复!谢谢大家!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-05-15
博客简介:

m0_47867638的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    9
    当前总分
    7,528
    当月
    185
个人成就
  • 6月份城市(北京)之星TOP 3
  • 获得6,006次点赞
  • 内容获得493次评论
  • 获得5,336次收藏
  • 代码片获得20,127次分享
创作历程
  • 395篇
    2024年
  • 354篇
    2023年
成就勋章
TA的专栏
  • 2024年YoloV8改进创新指南
    付费
    129篇
  • YoloV8最新改进手册——高阶篇
    付费
    188篇
  • YoloV10改进手册——高阶篇
    付费
    32篇
  • 超越Yolov9:从技术升级到论文的全程指南
    付费
    60篇
  • Yolo分割实战、改进合集
    付费
    4篇
  • python实战1200例
    付费
    25篇
  • 高质量AI论文翻译
    付费
    177篇
  • Yolo系列小目标改进与实战
    付费
    21篇
  • YoloV5|V7改进与实战——高阶篇
    付费
    55篇
  • 大模型论文翻译与实战
    付费
    12篇
  • RT-DETR实战与改进手册
    付费
    18篇
  • Yolo系列轻量化改进
    付费
    30篇
  • 通用视觉论文与模型
    付费
    4篇
  • 深度学习精讲与实战
    付费
    30篇
  • 行人跟踪、ReID以及行人属性
    付费
    10篇
  • Yolo11实战、改进——高阶指导
    4篇
  • 图像分类实战
    49篇
  • 疑难问题
    11篇
  • python基础
  • NLP
    7篇
  • OpenMMLab实战营
    13篇
  • 2023必读AI论文翻译
  • 大模型部署实战
  • 知识蒸馏
    9篇
  • 超分辨率采样
    2篇
TA的推广
兴趣领域 设置
  • Python
    python
  • 人工智能
    计算机视觉目标检测人工智能深度学习神经网络
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Yolo11改进策略:注意力改进|VOLO,视觉识别中的视觉展望器|即插即用|附代码+改进方法

本文参考的是《VOLO:视觉识别中的视觉展望器》一文,该论文主要讨论了视觉识别领域中卷积神经网络(CNNs)与视觉转换器(ViTs)的性能对比,并提出了一个新的模型架构——Vision Outlooker(VOLO)。VOLO通过引入一种新颖的前景注意力机制(Outlook Attention),在ImageNet分类任务上实现了卓越的性能,且能够很好地迁移到下游任务,如语义分割。
原创
发布博客 11 小时前 ·
1005 阅读 ·
31 点赞 ·
0 评论 ·
9 收藏

YoloV10改进策略:注意力改进|VOLO,视觉识别中的视觉展望器|即插即用|附代码+改进方法

本文参考的是《VOLO:视觉识别中的视觉展望器》一文,该论文主要讨论了视觉识别领域中卷积神经网络(CNNs)与视觉转换器(ViTs)的性能对比,并提出了一个新的模型架构——Vision Outlooker(VOLO)。VOLO通过引入一种新颖的前景注意力机制(Outlook Attention),在ImageNet分类任务上实现了卓越的性能,且能够很好地迁移到下游任务,如语义分割。
原创
发布博客 11 小时前 ·
567 阅读 ·
13 点赞 ·
0 评论 ·
15 收藏

VOLO:视觉识别中的视觉展望器

视觉识别领域多年来一直被卷积神经网络(CNNs)所主导。尽管最近流行的视觉转换器(ViTs)在ImageNet分类任务中展示了基于自注意力模型的巨大潜力,但如果不提供额外数据,其性能仍然落后于最新的最优卷积神经网络(SOTA CNNs)。在本文中,我们试图缩小性能差距,并证明基于注意力的模型确实能够超越卷积神经网络。我们发现,限制ViTs在ImageNet分类任务中性能的一个主要因素是它们将精细特征编码到标记表示中的效率较低。
原创
发布博客 前天 22:21 ·
827 阅读 ·
11 点赞 ·
0 评论 ·
22 收藏

YoloV8改进策略:注意力改进|VOLO,视觉识别中的视觉展望器|即插即用|附代码+改进方法

视觉识别领域多年来一直被卷积神经网络(CNNs)所主导。尽管最近流行的视觉转换器(ViTs)在ImageNet分类任务中展示了基于自注意力模型的巨大潜力,但如果不提供额外数据,其性能仍然落后于最新的最优卷积神经网络(SOTA CNNs)。在本文中,我们试图缩小性能差距,并证明基于注意力的模型确实能够超越卷积神经网络。我们发现,限制ViTs在ImageNet分类任务中性能的一个主要因素是它们将精细特征编码到标记表示中的效率较低。
原创
发布博客 前天 20:51 ·
1022 阅读 ·
32 点赞 ·
0 评论 ·
14 收藏

为什么要做特征的归一化/标准化,以及特征归一化/标准化方法

在机器学习和数据科学中,特征的归一化/标准化是数据预处理的重要步骤。
原创
发布博客 前天 17:45 ·
859 阅读 ·
6 点赞 ·
0 评论 ·
14 收藏

YoloV10改进策略:Block改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

通过百度网盘分享的文件:YoloV10改进策略:Block改进EPSANet,卷积神经网络上的...链接:https://pan.baidu.com/s/1KfWnnfhHdEmg4VVU9Eo_Wg
原创
发布博客 前天 06:36 ·
166 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

YoloV10改进策略:注意力改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

论文介绍本文介绍的论文是“EPSANet:卷积神经网络上的高效金字塔挤压注意力块”,该论文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。论文通过替换ResNet瓶颈块中的3×33 \times 33×3卷积为PSA模块,获得了一种名为高效金字塔挤压注意力(EPSA)的新型表示块。EPSA块能够轻松地作为即插即用组件添加到已建立的主干网络中,并能显著提升模型性能。基于这些EPSA块,论文开发了一种简单且高效的主干架构,即EPSANet,该架构能够为包括但不限于图像分类、目标检测、实
原创
发布博客 前天 01:45 ·
716 阅读 ·
25 点赞 ·
0 评论 ·
11 收藏

YoloV8改进策略:Block改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

https://arxiv.org/pdf/2105.14447最近,研究表明通过在深度卷积神经网络中嵌入注意力模块可以有效提升其性能。本文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。通过将ResNet的瓶颈块中的3×33 \times 33×3卷积替换为PSA模块,获得了一种名为高效金字塔挤压注意力(EPSA)的新型表示块。EPSA块可以轻松地作为即插即用组件添加到已建立的主干网络中,并能显著提升模型性能。因此,本文通过堆叠这些ResNet风格的EPSA块,开发了一种简单且高
原创
发布博客 2024.11.10 ·
651 阅读 ·
12 点赞 ·
0 评论 ·
14 收藏

YoloV9改进策略:注意力改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

论文介绍本文介绍的论文是“EPSANet:卷积神经网络上的高效金字塔挤压注意力块”,该论文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。论文通过替换ResNet瓶颈块中的3×33 \times 33×3卷积为PSA模块,获得了一种名为高效金字塔挤压注意力(EPSA)的新型表示块。EPSA块能够轻松地作为即插即用组件添加到已建立的主干网络中,并能显著提升模型性能。基于这些EPSA块,论文开发了一种简单且高效的主干架构,即EPSANet,该架构能够为包括但不限于图像分类、目标检测、实
原创
发布博客 2024.11.10 ·
355 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

YoloV8改进策略:注意力改进|EPSANet,卷积神经网络上的高效金字塔挤压注意力块|即插即用|代码+改进方法

本文介绍的论文是“EPSANet:卷积神经网络上的高效金字塔挤压注意力块”,该论文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。论文通过替换ResNet瓶颈块中的。
原创
发布博客 2024.11.10 ·
229 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

EPSANet:卷积神经网络上的高效金字塔挤压注意力块

最近,研究表明通过在深度卷积神经网络中嵌入注意力模块可以有效提升其性能。本文提出了一种新颖、轻量且有效的注意力方法,即金字塔挤压注意力(PSA)模块。通过将ResNet的瓶颈块中的3×3卷积替换为PSA模块,获得了一种名为高效金字塔挤压注意力(EPSA)的新型表示块。EPSA块可以轻松地作为即插即用组件添加到已建立的主干网络中,并能显著提升模型性能。因此,本文通过堆叠这些ResNet风格的EPSA块,开发了一种简单且高效的主干架构,即EPSANet。
原创
发布博客 2024.11.10 ·
262 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

DeBiFormer实战:使用DeBiFormer实现图像分类任务(二)

训练部分。
原创
发布博客 2024.11.09 ·
738 阅读 ·
21 点赞 ·
0 评论 ·
22 收藏

DeBiFormer实战:使用DeBiFormer实现图像分类任务(一)

摘要一、论文介绍研究背景:视觉Transformer在计算机视觉领域展现出巨大潜力,能够捕获长距离依赖关系,具有高并行性,有利于大型模型的训练和推理。现有问题:尽管大量研究设计了高效的注意力模式,但查询并非源自语义区域的关键值对,强制所有查询关注不足的一组令牌可能无法产生最优结果。双级路由注意力虽由语义关键值对处理查询,但可能并非在所有情况下都能产生最优结果。论文目的:提出DeBiFormer,一种带有可变形双级路由注意力(DBRA)的视觉Transformer,旨在优化查询-键-值交互,自适应选
原创
发布博客 2024.11.09 ·
686 阅读 ·
28 点赞 ·
0 评论 ·
9 收藏

Yolo11改进策略:上采样改进|CARAFE,轻量级上采样|即插即用|附改进方法+代码

https://arxiv.org/pdf/1905.02188特征上采样是许多现代卷积网络架构(例如特征金字塔)中的关键操作。其设计对于诸如目标检测和语义/实例分割等密集预测任务至关重要。在本文中,我们提出了内容感知特征重组(CARAFE),这是一种通用、轻量级且高度有效的算子,以实现这一目标。CARAFE具有几个吸引人的特性:(1)大视野。与仅利用子像素邻域的前期工作(例如双线性插值)不同,CARAFE可以在大感受野内聚合上下文信息。(2)内容感知处理。与对所有样本使用固定核(例如反卷积)不同,CAR
原创
发布博客 2024.11.09 ·
985 阅读 ·
19 点赞 ·
0 评论 ·
31 收藏

Yolo11实战改进:一文读懂Yolo11到实战。

YOLO11是Ultralytics YOLO系列实时目标检测器的最新迭代版本,它以尖端的精度、速度和效率重新定义了可能性。在之前YOLO版本令人瞩目的进步基础上,YOLO11在架构和训练方法上引入了重大改进,使其成为各种计算机视觉任务的通用选择。关键特性:YOLO11采用改进的主干网络和颈部架构,提高了特征提取能力,以实现更精确的目标检测和更复杂的任务性能。YOLO11引入了精细的架构设计和优化的训练流程,提供了更快的处理速度,并在准确性和性能之间保持了最佳平衡。
原创
发布博客 2024.11.09 ·
826 阅读 ·
27 点赞 ·
0 评论 ·
2 收藏

YoloV10改进策略:上采样改进|CARAFE,轻量级上采样|即插即用|附改进方法+代码

https://arxiv.org/pdf/1905.02188特征上采样是许多现代卷积网络架构(例如特征金字塔)中的关键操作。其设计对于诸如目标检测和语义/实例分割等密集预测任务至关重要。在本文中,我们提出了内容感知特征重组(CARAFE),这是一种通用、轻量级且高度有效的算子,以实现这一目标。CARAFE具有几个吸引人的特性:(1)大视野。与仅利用子像素邻域的前期工作(例如双线性插值)不同,CARAFE可以在大感受野内聚合上下文信息。(2)内容感知处理。与对所有样本使用固定核(例如反卷积)不同,CAR
原创
发布博客 2024.11.07 ·
430 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

YoloV8分割实战:使用YoloV8训练Aeroscapes数据集

Aeroscapes 是一个专注于空中语义分割的数据集,它由一组从商业无人机上拍摄的图像组成,涵盖了从5到50米不等的高度范围。此数据集提供了3269张720p分辨率的图片以及相应的地面真实度(ground-truth)标记,涵盖11种不同的类别。
原创
发布博客 2024.11.07 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python 遍历字典

在 Python 中,遍历字典(dictionary)通常意味着访问其键(keys)、值(values)或键值对(key-value pairs)。
原创
发布博客 2024.11.07 ·
24 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YoloV9改进策略:上采样改进|CARAFE,轻量级上采样|即插即用|附改进方法+代码

论文介绍CARAFE模块概述:本文介绍了一种名为CARAFE(Content-Aware ReAssembly of FEatures)的模块,它是一种用于特征上采样的新方法。应用场景:CARAFE模块旨在改进图像处理和计算机视觉任务中的上采样过程,特别适用于目标检测、实例分割、语义分割和图像修复等任务。目标:通过引入内容感知的重新组装机制,CARAFE旨在提高上采样过程的准确性和效率。创新点内容感知上采样:与传统的上采样方法(如双线性插值、转置卷积等)相比,CARAFE引入了内容感知机制,
原创
发布博客 2024.11.04 ·
1047 阅读 ·
15 点赞 ·
0 评论 ·
15 收藏

YoloV8改进策略:上采样改进:CARAFE:轻量级上采样|即插即用|附改进方法+代码

https://arxiv.org/pdf/1905.02188特征上采样是许多现代卷积网络架构(例如特征金字塔)中的关键操作。其设计对于诸如目标检测和语义/实例分割等密集预测任务至关重要。在本文中,我们提出了内容感知特征重组(CARAFE),这是一种通用、轻量级且高度有效的算子,以实现这一目标。CARAFE具有几个吸引人的特性:(1)大视野。与仅利用子像素邻域的前期工作(例如双线性插值)不同,CARAFE可以在大感受野内聚合上下文信息。(2)内容感知处理。与对所有样本使用固定核(例如反卷积)不同,CAR
原创
发布博客 2024.11.04 ·
1771 阅读 ·
52 点赞 ·
0 评论 ·
36 收藏
加载更多