Yolo11改进策略:Block改进|MBConv在Yolo11中的应用

摘要

论文介绍

  • EfficientNetV2概述:EfficientNetV2是谷歌在2019年发布的卷积模型,旨在实现更快的训练速度和更高的参数效率。这些模型通过结合训练感知神经架构搜索和缩放技术来共同优化训练速度和参数效率。

  • 研究背景:随着模型大小和训练数据量的增加,训练效率成为深度学习领域的重要关注点。EfficientNetV2的提出旨在解决当前模型训练中存在的训练时间长、参数规模大等问题。

创新点

  • 训练感知神经架构搜索:EfficientNetV2采用了训练感知的神经架构搜索方法,能够在丰富的搜索空间中自动找到最优的模型架构,从而在保证性能的同时提高训练效率。

  • 改进的渐进学习方法:为了进一步提高训练速度,本文提出了一种改进的渐进学习方法。该方法在训练过程中逐步增加图像尺寸,并自适应地调整正则化强度,以平衡不同图像尺寸下的网络容量和过拟合风险。

方法

  • MBConv模块:EfficientNetV2中引入了Fused-MBConv模块&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值