2 RNN模型
-
学习目标:
-
了解什么是RNN模型.
-
了解RNN模型的作用.
-
了解RNN模型的分类.
-
-
2.1 什么是RNN模型:
-
RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.
-
-
2.1.1 一般单层神经网络结构:

-
2.1.2 RNN单层网络结构:

-
2.1.3 以时间步对RNN进行展开后的单层网络结构:

-
RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.
-
2.2 RNN模型的作用:
-
因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.
-
-
2.2.1 下面我们将以一个用户意图识别的例子进行简单的分析:


本文详细介绍了RNN模型,包括其结构、作用、分类和应用场景。RNN适用于序列数据处理,广泛应用于NLP任务,如文本分类、意图识别等。文章通过用户意图识别例子解释RNN的工作流程,并按输入输出结构和内部构造分类RNN,如N vs N、N vs 1、1 vs N、N vs M结构,以及传统RNN、LSTM、Bi-LSTM、GRU和Bi-GRU等。
最低0.47元/天 解锁文章
499

被折叠的 条评论
为什么被折叠?



