pd.to_datetime()函数用法:
①获取指定的时间和日期。
②将Str和Unicode转化为时间格式。
在处理时间类型的数据时,往往先将其类型调整为时间类型,然后再进行相应维度指标的获取。
本文在数据读取后首先利用pd.to_datetime()将时间列数据进行转换。



import pandas as pd
from datetime import datetime as dt
data0=pd.read_excel(r"C:\Users\E97\Desktop\time_sheet.xlsx",sheet_name="time")
df=data0["订单创建时间"]
df
data=pd.DataFrame()
data["创建时间"]=pd.to_datetime(df) # 将数据转换为时间类型
data["创建日期"]=data["创建时间"].dt.date # 获取日期(Y%-M%-D%)
data["创建年份"]=data["创建时间"].dt.year # 获取年份
data["创建月份"]=data["创建时间"].dt.month # 获取月份
data["创建天数"]=data["创建时间"].dt.day # 获取多少号
data["创建时间段"]=data["创建时间"].dt.hour # 获取小时数
data["创建周"]=data["创建时间"].dt.isocalendar().week # 获取星期数
data["创建星期"]=data["创建时间"].dt.weekday.map({0:"星期一",1:"星期二",2:"星期三",\
3:"星期四",4:"星期五",5:"星期六",6:"星期日"}) # 获取星期几(0~6分别代表星期一~星期日)
# isocalendar()函数:
# 返回日期的year(年份),week(周数),day(星期几)三个指标
da=pd.DataFrame()
da["创建时间"]=pd.to_datetime(df)
da["创建时间"].dt.isocalendar()
da["年份"]=da["创建时间"].dt.isocalendar().year
da["周数"]=da["创建时间"].dt.isocalendar().week
da["星期"]=da["创建时间"].dt.isocalendar().day.map({1:"星期一",2:"星期二",3:"星期三",\
4:"星期四",5:"星期五",6:"星期六",7:"星期日"}) # (1~7分别代表星期一~星期日)
3万+

被折叠的 条评论
为什么被折叠?



